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Abstract

Recent developments of classical information theory
by Conant and Ashby have given rise to a number of techniques by
which the behaviour of a complex system can be analysed. Even in the
absence of any information about the identity of the variables measured
it is possible to detect which parts of the system are closely coupled
and which independent. The metrics of the variables can be mixed,
(nominal, ordinal, etc.) and the method is particularly suited to
dynamic systems. This paper discusses how the structure of the
"molecules"” of behaviour can be deduced from the entropies of the
"atoms", and outlines the solutions to certain methodological problems
involved. Examples of the method are given from the fields of attention
and skills, including the representation of the effects of practice on
a 7-degree-of-freedom perceptual motor skill involving a complex man-
machine interface. Further analysis and development of the technique

is being carried out and will be reported subsequently.
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Introduction

Experimental psychology has developed a sophisticated
set of experimental designs for the analysis of behaviour when the
experimental paradigm involves three or fewer variables, trials and
variables are independent, and the response made by the subject does
not interact with the subsequent history of the experiment. It has

been much less successful in attacking dynamic systems, and systems

with many variables. And yet complex dynamic systems are if anything

the norm in what is usually called the "real world" of manual and
supervisory control and sophisticated man-machine systems. Rasmussen

has pointed out the differences forcefully:

"Laboratory tasks tend to have a well~defined goal or
target. Payoff matrices are artificial and have low values.
The subject is controlled by the task. Task instructions are
specific. Task requirements are stable, Subjects are relatively
untrained. By contrast in '"real" tasks only a (sometimes vague)
overall performance criterion is given and the detailed goal
structure must be inferred by the operator. Task instructions
are inferred by the human operator from rather general commands
about how to perform the task. The task may vary as the demands
of the system vary in real time. Operating conditions and the
system itself are liable to change. Costs and benefits may have
enormous values. There is a hierarchy of performance goals. The
operator is usually highly trained, and largely controls the task,
being allowed to use what strategies he will. Risk is incurred in
ways which can never be simulated in the laboratory".

Rasmussen 1979.




Quite new methods seem appropriate for such real world
systems, and even the methods of classical and optimal control theory
have severe limitations when they are applied to situations in which
many parts of the system are non~linear, some variables may be discrete
and others continuous, and variables with different orders of metric

properties are involved.

In the last few years researchers in the area known as
Systems Science have developed a number of methods which look promising
as the basis for tackling such complex dynamic systems. This report
is an introduction to their use for the analysis of man-machine systems.

They purport to have the following advantages over more common techni-

ques:

1. Variables with different metrics from nominal to
ratio can be compared directly.

2. Certain kinds of correlation which traditional methods
fail to reveal can be detected (for example curvilin-
ear regression).

3. The results are "structure orientated”. That is, the
very nature of the technique tends to make the user
think in terms of the system being investigated as
made up of a number of subsystems which are inter-
connected, and those subsystems in turn being perhaps
decomposable into their subsystems, and so on. The
method leads directly to an appreciation of the

"molecular"” structure of system behaviour and the

timing dynamics of the variables.
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4. Absolutely no a priori knowledge is needed about
the relation between the variables, or even
which are input and which output variables.

The total number of variables which may be
involved must be known, and their identities,
although the method will even show whether an
important variable has been omitted. A rough
knowledge of the bandwidth of the system is

useful although not absolutely necessary.

One of the fundamental ideas involved is that of "constraint"
among the variables qf 4 system. We describe a system as a set of
interacting subsystems which may be decomposable into other subsystems
and ultimately into primitive "atomic" variables. A primitive
variable which cannot be further decomposed will here be called an
"atom" of behaviour, and combinatioas of atoms (subsystems) will
be called "molecules" of behaviour. To discover the structure of
behaviour is to dicsover which atoms are combined into molecules,
and which molecules are combined to make larger molecules. If an
atom is coupled to another atom, (or an atom to a molecule, or
a molecule to a molecule) one will causally affect the other.

Evidence that two subsystems are coupled is that one affects the
value taken by the other - hence "constraint”. If one molecule
can take any value regardless of the values taken by the other

then they are independent and no information passes between them.

If on the other hand one molecule does affect another, then it

L
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must inform the other of its value and in so doing constrain the E»

values taken by the other. Information passes from one to the

other. The problem of determining the existence, strength and i

direction of coupling effects between parts of a system can then

be seen as the problem of determining the amount of information i

transmitted between them, and hence we can formulate the problem

of identifying structure in terms of the mathematical theory
of communication, or "information" theory. As we will see

in a moment, that theory was originally defined in terms of

"transmitters" and "receivers"”. But the mathematics are siﬁply
| the mathematics of the relations”between sets, and we do not need
| to identify the sets with any particular physical entity in order
to apply the formulae. All we require are variaples whose values
; can be related. Information theory is then a natural starting

point for the analysis of structure.

’1 Shannon (1946) in his classical work on the mathematical

theory of communication showed how the flow of information from

a transmitter to a receiver over a channel might be defined and

measured, and introduced the concepts of entropy and transmission.

[ The transmitter sent suitably encoded signals over a (usually

noisy) channel to be identified by a receiver which decoded them.

Defining the message uncertainty in terms of averages over signal ;

probabilities, Shannon defined the entropy of a source as

) H(a) = f Pai 108y Pyj (1)

? where Pai is the probability of occurrence of the ith symbol in the :




set of symbols A. Similarly the entropy of the messages at the

receiver, B is

and the average transmission between A and B is given by
T(A,B) = H(A) + H(B) - H(A,B)

H(A,B) = - inlj 1082 pij

The calculations are usually taken from a table giving

the joint frequency of occurrence of symbols, as shown in Figure (1).

Figure 1.

Frequency Counts for Transmissions

2 the number of times a occurred at the receiver when b occurred

at the transmitter, "frequency of a given b"




3
B

b iledganin it B i e A e Sl

the number of times transmitter A sent symbol b

cs

the total number of symbols transmitted

N
= Z(nA + nAb *.oo..m, ) =1 (nB + ...y )
a e a e
Py T oa, /N
A.
i
p; = ng /N
J
.. = n,;./N
Pij ilj

Although it is usual to compute H and T from probabilities,

we will here use frequencies, since to do so has computational advantages

at later stages in the analyses. We therefore have

- -1
H(A) = 1og2N N%nilogzni (3)
H(B) = log,N - lZn.logzn. (4)

H(A,B) = log,N - %é%ijlogznij (5)
and T = H(A) + H(B) - H(A,B) as before.

Note that T = 0 if and only if A and B are completely statistically
independent, and that T is mathematically symmetrical,

H(A) + H(B) - H(A,B) = T = H(B) + H(A) - H(B,A)

which means that from the data alone it is impossible to tell which is

transmitter and which receiver, which source and which sink, even when

the transmission between them has been calculated.

However, it also follows from that that we do not need to
know which is source and which is sink in order to detect the presence
of coupling between two variables. Without any knowledge of the physical
embodiment of the variables structural relations can be discovered, and

are represented by the existence of significant statistical relationships

between variables. (Obviously in the end we hope to argue to the
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appropriate physical realisation of the mathematical relationms).

We need have no data or information about a system other

than the values taken by its variables at different moments in order to 3
deduce its structure. Calculating transmission between variables will

tell us which are tightly coupled, and it is then up to us to deduce

) a s e e ekt e
"

the physical or psychological meaning of the coupling.
Note that from Equations (1) and (Z) the value of T cannot : 1
be greater than the smaller of'H(A), H(B). That is,
T < min ( H(A), H(B) ) (6)
In order to compare the strength of coupling between different sets
of variables whose minimum entropies may be different it is therefore {
useful to normalise the transmission with respect to the maximum
possible value of T, so that the relationship is now the proportion of
total available information which is transmitted. We therefore define
]
T* = T/min ( H(A), H(B) ) N
where 0 < T% <1 for all T,A,B.
As an example of the direction our line of argument is W

going, consider the following data, collected some time ago in an

experiment on selective listening:

c

0 1
189 51
283 12956

Contingency Tables for relations between four variables.
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Without knowing anything about the nature of the variab- |
les A,B,C or D we compute all the possible transmissions, T(A:B),

T(A:C) . . . T(C:D). After normalising we obtain

T*(A:B) = 0.043 T*(B:C) = 0.151
T*(A:C) = 0.222 T*(B:D) = 0.340
T*(A:D) = 0.063 T*(C:D) = 0.197

: which can be expressed in a digraph thus:

1
[1
. 1
Figure 2 .
Digraph of transmissions for ’
attention data
The double ended arrows indicate that we do not know which '$

variable is source and which sink in each relation. It is clear that

the most important couplings are between A,C and B,D, although there

is also a moderate relation between C,D and B,C. These close couplings

can be thought of as the behavioural "molecules" of the system, in -

which the individual atomic variables play a part. }

We may now explicitly acknowledge the fact that the terms ’

"transmitter’ and "receiver” are perhaps less generally useful than 7}

?, "gource" and "sink", since the former mir have too strong connotations §
about the nature of the variables. We should also note that a sink <j

for one relation can be a source for another. In cases such as the data

we are now considering the presence of double headed arrows means that

neither partner in the relation can be unequivocally identified as a
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source or sink purely from the data. We shall later see that there are
ways to handle the data such that this ambiguity disappears, and
sources and sinks can be identified even without recourse to knowledge

about the physical nature of the system.

In the present case we can identify some of the sources
and sinks by recourse to such a physical interpretation. Variables A
and B were two pure tone trains which were presented binaurally to a
listener, A being high pitched and B being low pitched. Each was a
binary valued variable, each tone being either 60 or 6 dB intensity.
Variables C and D were the binary valued responses made by the listener,
who pressed one of two buttons for the high pitched signals, and one
of two other buttons for the low pitched signals, depending on whether
he judged the signal to be louder or softer of the two. The digraph
therefore shows that each input is the main source of its correspond-
ing response ({A,C}, {B,D}),that there is some cross talk from the

lower pitched signal to the response to the higher pitched signal

({B,C}) and that there is some cross talk between the respomses ({C,D}).

Since responses do not cause stimuli, we can conclude that causality
must flow from A and B to C and D, but we cannot be sure which of the
responses is source and which sink, since there is no logical reason

to ascribe an assymetry to the relationm.

Up to this point the development of the method is similar
to that suggested some years ago by Garner and Morton (196%), although
they did not use normalised transmissions, nor digraphical represent-
ations. We will now, however, follow Conant in developing these methods
considerably further, showing how to detect "molecules", their structure,

and interaction as a basis for understanding the behaviour of
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multivariate interconnected dynamic systems.

Table 2 shows some data from a paper by Conant (1972).
The data are taken from a simulation, and show the first few samples
of a very long sequence (N =1000). For expository purposes we
assume with him that each variable can take one of three values

(Q = 3), and that the three values of each variable are equiprobable.

TIME
01 2 3 4 5 6 7 8 12 13 14

O
~—
o
i~
—

¥ 1133322112 2 1 1 2 2

Table 2.

The first 14 samples of Conaant's data

As already implied, we will call individual variables
"atoms" and groups of variables "molecules" when they are coupled.
The maximum entropy of each atomic variable is, by Equation (3)

1
1000

z
H(Xi) = log,1000 - i nilogzni

which, for equiprobable values, is

1 1000 . 1000
H(X,) = 10g,1000 - 7.--"43.4 " 27,

= + 1,585 bits.

All variables are measured at each instant, t = 1, t = 2,

« « « . t =1000.

The steps in computing T* as we have defined it above are now
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1. Choose a variable, say variable X

1

2. Note its range of values (1,2,3).

3. Make a frequency count of the occurrences of those
values (n, , n, , n, ).

11 12 13

4. Compute the series of nilogzni terms for each value.

5. Compute H(Xl) from Equation (3).

6. Similarly compute H(Xz), . . 'H(XS)

7. Construct the contingency matrix showing the joint
occurrences of (n, , n,), (n, , n, ) and so on and

11 2 11 22

from them compute H(Xl.xz) etc. for all pairs.

8. Compute T and hence T* for all pairs, T*(Xlzxz) .
. e T*(Xazxs).

9. Display the couplings and their magnitudes on a

digraph.

We now have an analysis of the static system, displaying which atoms

« .

are coupled to which other atoms so that their values at least partly

- determine each other's simultaneous values.

Let us now assume that the number of measurements taken

i of each variable is sufficient that the loss of a few values at the

beginning or end of the record will not materially affect our estimate

(¥ -] o - ¥ -y $cow -y

L

of the frequency of occurrence of values and that therefore we can
perform the equivalent of the traditional auto- and cross-correlation
on the data by measuring the contingencies of occurrence with a time

delay between the moments at which the values are measured.

We note that in general if we wish to discover the

organisation of a complex multivariate dynamic system we will need

to know how the value of one variable at time t affects the value of

[p——




the same and other variables at time (t + dt). (The latter will be
called t' henceforth for notational convenience). The appropriate
value of t' will depend of course on the physical, physiological, and
psychological properties of the man-machine system, since it is
characteristic of causal relations that their effects take some time
to propagate, due to transport delays, integrations, loop delays,
etc... We saw earlier that when we measure the transmission between
two variables whose values were sampled simultaneously we cannot
deduce from a high T* which variable is forcing the other or whether
both are being forced by a third unknown variable. But when t' # 0
we can reasonably assume that in many cases the later value is caused by
the earlier value (or that both are caused by a third variable). At
least the later variable cannot be causing the observed value of an
earlier variable. (By earlier variable we mean the one whose value

is measured at t, and by the later variable the ome whose value is

measured at t').

Thus by measuring the T* between variables one of whose
values is delayed by dt and sampled at t' we can discover correlational
and causal connections which define the "molecules" of behaviour.

We now quote an extensive passage from Conant (1972) which summarises
the method very clearly. (His notation is slightly different from

ours, but no confusion should result).

"We assume a set of K primary variables, not necessarily metric,
each of which has been observed once every “standard time increment"
for N increments, giving a total of K N observations. With each

primary variable is associated a derived variable Xj, 1 < J <K, whose

values are taken to be the positive integers from 1 through Hj
(finite) for notational convenience. 1f the primary variable is not
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metric, these integers represent its categories, and if the primary
variable is metric, these integers represent its values, or ranges of
its values if it is a continuous variable. Categories or values must
be grouped or ranges quantized so as to make M, reasonably small; that
matter and limits on the "standard time increment” will be discussed
in more detail further om.

The variablesX, may be grouped into sets; no confusion results

]
if in this case we let Sj denote the set le, ij, xj%. 80
grouped and also the vector variable (X,., X essey X, ) whose
31" “i2, in

components comprise the set. When necessary , reference will be made
to values at different times by superscripts or primes; S? denotes Sj
at the kth measurement, (Xi, Xi) is a vector variable whose components
are xi measured at two successive time increments, and so on.

It is well known that the entropy of xj, denoted H(xj), is a
reasonably good measure of the nonconstancy or variability of Xj.
H(Xj) is calculated from the observations on Xj by the following

formula:

%
B(X,) = log,N "VZ n,log,ny (1a)
11

in which ny is the observed number of occurrences of the event ng =1

and ZM') ( n;): N. 1If the events occur-with definite probabilities
i=1

Py» then H(xl).:z"i%pl as N—»>o0 and (la) can be thought of as an
empirical estimate of the true entropy; however, we do not need to
assume the existence of the pi's in what follows. All quantities
discussed in this correspondence, as well as the relations "statistical
independence" and "statistical dependence', are interpreted as estimations
based on the observations over a finite time span.

The entropy of Sj = (le, Ajz"""’xjn ) is denoted by H(Sj).
It is a nonnegative measure of the total amount of activity or variabilicy

in the set SJ, and it is calculated by a formula similar to (1A):

H(S,) = log,N - :"anlogz n, (1b)
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in which, however, n; is interpreted as the number of occurrences
of the ith possible value of the vector Sj. As before,ZZrH_- N.

The entropy of the union of two sets S1 and Sj is denoted by H(Si’s ),

3

and so forth.
The observed transmission between Si and Sj is denoted T(S Sj)
and is defined as follows:

T(S Sj) H(Si) + H(Sj) - H(Si,Sj) (2)

This is a nonnegative measure of the strength of the relation between

Si and Sj° it is zero if and only if S: and S? are statistically

independent (when averaged over all k) [5: pp. 41-43], and it is a
maximum (equal to min {H(S ), H(S ;} ) if and only if one vector

variable is strictly dependent upon the other that is, S: is a function

of S:, for all k < N, or vice versa. The generalization of (2) is
as follows: "
e a8 - - HY
T(S,:§, 100015 ) b H(S;) = H/S|,S,,...,8)) (3)

iw{
This is a measure of the total comstraint holding between, but not

within, the sets S, through sm'

1
Simultaneously measured variables are implied unless a contrary
j) is a
measure of the strength of the relation between Si and Sj when

j

) measures the effect of X, on X
one time increment later, etc. With regard to T(X,:

indication is given by primes or superscripts. Thus T(S

observed simultaneously; T(X 1 3

4 j)’ note that
in observations over N time increments one would obtain N samples of
Xi but only N - 1 samples of X; and (Xi Xj) Since for statistical

validity one must have an equal number of samples from each variable,

the last sample of X, would not be used, and all entropies would be

calculated from N - i occurrences.

Entropies and transmissions have been used for some time as
measures of variability and relatedness, respectively, and their
properties are well known. The notation used in this correspondence is
consistent with that of Ashby [6], who has developed many identities
relevant to the calculations suggested here.

The usefulness of T( ) in the decomposition of complex systems
is suggested by Simon's statement quoted earlier. Suppose a system is
in fact "nearly decomposable' into subsystems sl’sz"°"sm (implying a
partition of all variables in the system; then one would expect that

the constraint holding between the subsystems over a short time span
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would be weak compared to the constraint within them. If the time

increment is chosen properly (on the order of the time constants of

the variables and short compared with time constants of subsystem

interactions), the constraint holding over one time increment within

the jth subsystem Sj-.- le’sz’““’xj'% will be measured reasonably
well by T ., defined as :
LA
T . =T(X

v jlzle':szzsz'......: jm:xjm')
gsince this transmission measures the nonindependence of all variables
in the subsystem over the time increment. The strength of the relation
between the ith and jth subsystems over one time increment is measured
by T , defined as

bij |
Tyyy = T(<Si,S’j> : (Si.S'j) )

and the constraint between all subsystems over one time increment is

measured by Tb:

Ty = T(C8.,8. ") + {5,,8," Y i.u: <sn,sn'> )

Tb is an upper bound for T

bij.
, In a nearly decomposable system Tb11 is small compared to Twi
+ ij, for all 1 and j, and in addition Tb is small compared to :Eijj;

the calculation of these transmissions thus allows verification of a
proposed grouping of variables into subsystems.
The question remains, how does one refer a proposed grouping from

the observations? A reasonable measure of the effect of X, on X, one

i b
time increment later is normalized transmission tij:
. ]
tij - 'r(xl.x1 )
H(X,")
]
T(xizxj') is strongly affected by the number of categories or quantum
,; levels in X, and X,, and the normalization indicated largely eliminates

1 3
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that effect. The result, is always between zero and unity,

t
i3°?
N and Xj' are statistically independent and unity
if and only 1if Xy' is strictly determined by X, Although odd

situations can be contrived in which it works poorly, one reasonable

zero if and only X

procedure for generating a grouping of variables into subsystems is

to calculate the t,. for all {1 and j and then deduce, by starting

ij
with the largest value and working down, which variables most strongly
affect which others. The grouping can then be checked with the verifi-

cation procedure suggested in the previous paragraph."
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Several points need to be made. Conant assumes that
the user of the method can decide in advance what value to use for his
time delay, and so discusses only the case where t' is one cime unit
(appropriately chesen) later than t. But as with traditional
correlation we can generate a correlation function by systematically
letting t' increase and computing T* between pairs of variables at a
large number of time intervals. Since the data need not have the same
number of values on each variable, and since the variables can be

nominal categories (e.g. "yes", '"no') as well as continuous variables,

v

we effectively have a means of computing nonparametric auto~ and cross-
correlation functions. The autocorrelation function is found by
computing T*(Xi:Xi') in Conant's notation, that is the transmission

between a variable and itself measured later. Autocorrelation

hid bmed i Gy Aed Semd oy Sy OO

measures the "inertia" or "memory" of a variable - the tendency of

a variable to affect its own later value.

[ |

Table 3 and Figure 3 from Conant show the structure in

the data part of which are shown in Table 2.

TABLE 3
q ! lu .\'5 ‘
X, 0.073
Xz 0.012
X, X, 0.017
Xa 0.021
X Q.195
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Seven strongest pairwise relations, as indicated By arrows whose H
thickness is proportional to £y,




The analysis, to a first approximation, suggests that the system

is composed of two "molecules", (Xl,X3) and (XZ’XQ’XS)’ which are
virtually independent, since there is no large flow of information
between them, (Xl) being a source for both. (Note that it is not the
case that there is no transmission between them. Conant has graphed
only strongest of the relations, and has not discussed how to measure
the significance of the transmissions). Conant has also, in the
passage we quoted above, discussed the question of validating the
existence of independent molecules by estimating the transmission
between them. (In his paper what we are calling '"molecules" are
called "subsystems'"). Since the method is one which has not been
discussed in human factors treatment of information theory we will

develop some notation explicitly.

Validation depends essentially on computing the T* not
between the individual atoms - the measure which was used to suggest
the grouping of the atoms into molecules (we drop the quote marks from
now on for convenience), but between one molecule as a whole, and
another molecule as a whole. If the system can really be represented
as a number of tightly coupled molecules loosely coupled with one
another the total information transmission among the atoms of a molecule
should be high, but the transmission between the atoms of one molecule
and those of another should be low, and the transmission between
molecules should be low if the system is really composed of indepen-

dent subsystems.

To compute molecular transmission we first, as usual,
compute the entropy of the molecule and the joint entropy of the

contingency table. We then use Equation 2 and Equation 7 to compute

T*. The difference is that the variables are now vector variables,
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not scalars. As an example, let t' = 2, and take the values of the

variables from Conant's data, Table 2. The first entry in our

frequency of occurrence table is then to be calculated from the

entries in Table 4.

time 0. ...2.. .
X1 T....3..
X2 1. <20,
X3 1 . 3.
X4 1. 2.
X5 1. .. 2.
Table 4

The vector value of the molecule (X X3) is (1,1) at time

1’
t = 0 and (3,3) at time t = 2. The vector value of the molecule
(XZ’XA’XS) is (1,1,1) at t = O and (2,2,2) at t = 2. And the value of
the contingency table entries for H(A,B) is the value of the vector

( (Xl,x3)(X2,X4,X5) ) at the two moments, which are ( (1,1)(1,1,1,) )
at t = 0 and ( (3,3) (2,2,2,) ) at t = 2. Since we want to compute
the transmission between the molecules at a time delay of t' = 2, the
values for the table of frequency of occurrences are

(Xl’x3)t = (1,1) with (XZ’XA’XS)t‘ = (2,2,2).

More generally, if we have a molecule with three atoms

and each atom can take three values, the possible vector values the

molecular variable can take are 27 in number namely,

(1,1,1)
(1,1,2)
(1,1,3)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,1)
(1,3,2)
(1,3,3)
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and it is the frequency of occurrence of each of these triples

which we now use for computing nilbgzni. Similarly for a molecule
with two atoms each of which takes three values the molecular

variable values are the set

(1,1)
(1,2)

(3,2)
(3,3)

and their frequency must be tallied. To anticipate a point to which

we shall have to return later, the great increase in the number of values
taken by a vector variable even when the scalar atoms take only a few -
values has important implications for the amount of data which must

be collected. The contingency matrix from which molecular transmission

is computed therefore looks like Figure 4.

(Xl’x3)t
% (1,1) (1,2) (1,3) (2,1) :
o T m - " .
| ", «,2)] M, y)
GLDA @y || a1
! T :
| Taa,nl “((1,2)!
(1,1,2) ' (1,1,2)) (1,1,2)) .
| . - :
b | i n .
L (1,
o (1.1,3) (1,1,3)) :
‘- . - - - |
(Xy0X, %) (v | ; . ! 1 ‘

s

"3, ] £63,3,3)
(3,3))

- Am——t

S a4 .

£(3,3) N

&)

e
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wh o . . ..
ere n((l,]),(k,l,m)) is the number of times the value (i,j) occurs
in molecule (XI’XB) at time t and the value (k,1,m) occurs in molecule

(XZ.X4

’XS) at time t'. i
The calculations of entropies and transmission is
straightforward,
T( (XI’X3)t:(X2’x4’XS)t')
= HC (X,X) )+ HC (%,,%,,%) ) (8)
- H( (Xl’XB)t’(XTxA’xS)t')
and

T* = T( (X1’x3)t’(X2’X4’X5)c') (9

min ( H(X;,X,) , H(Xy,X, ,Xg) o)
There is no difficulty when t = t', that is, when there is no time

shift and we are looking at static not dynamic relatioms.

These calculations allow us to detect the inter-relations
and groupings among system variables, and to discover in what way and
to what extent the system can be regarded as being composed of nearly
independent subsystems. In the end the proposed structure must be

mapped back onto the physical situation in which the measurements were

made. We saw both with respect to the attention data and also to
Conant's hypothetical data how structure emerges from transmission
measures. Several different approaches have been suggested in recent
years. Most of them take their point of departure from the work of R
Ashby, and explore the implications of "higher moments" of information
transmission, such as Q-measures (which correspond to interactions as

distirct from transmissions) or new relations such as Krippendorf's

"structural entropy" which is defined as the constraint in the data

which remains when the constraint due to each variable acting

independently of the others is discounted. Those interested should

consult Ashby (1965), (1969), Broekstra (1976),(1977), and Krippendorf




3 AP e A i H, = A

(1979). While some of these at first sight seem to have considerably

more power than the use merely of transmissions, their application

to real, as distinct from simulated data turns out sometimes to reveal

rather bizarre properties of the measures. For example an attempt

by the writer to use Krippendorf's method on some data from perceptual

motor skills produced a situation where the largest values of structural

entropy were negative, which Krippendorf takes to mean that the earlier

values obtained have "overdetermined" the data. Since no earlier i

values than the large negative ones had appeared in the analysis it

is rather unclear how the resulting structure is to be understood.

Furthermore one of the most attractive qualities of Krippendorf's

method is the elegant graphical representation of structure which it

yields, but in practice the graphs become unintelligible for more

than five dimensions. (This is true for almost all graphical measures).

In this paper we will therefore stick to the use of transmissions, but

readers should be aware of the extensive publication on methods of

structural analysis at present going on in Systems Science journals.

Let us review the arguments which take us from entropy to

The total constraints among

transmission to structural interpretation.

the variables of the system due to their interactions make up the

overall transmission between all variables,

Tror = T§x1:x2:x3:x4:x5§ = H(X)) + H(X,)) + . . +H(X)

-H(Xl,XZ,X3,X4,X5)

What size are the molecules? If we calculate all the binary

transmissions T(XI:XZ)’ T(XI:X3) . o . T(XA:XS)’

sum the result, and subtract the result from TTOT the difference
L]

is the amount of constraint which is not accounted for by the binary

e i e T g e R TR I T gz L e eh
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molecules. If it is large with respect to T then it is

TOT

necessary to examine ternary molecules, etc. If it is small, then all
the structure is adequately accounted for by the binary interactions
plus the effect of each variable on itself. The result is the
required description of the organisation of the behaviour of the
system at the particular combination of (t,t') which was used to
compute Equations (8),(9), & (10). Conant (persoml communication)

has recently developed a new method which selects a "target"

variable whose behaviour it is desired to explain, and selects a

time shift (t'). The algorithm then finds the single relationship which
goes furthest to explaining the behaviour of the target variable;

then the binary relation which is strongest; then the ternary
relation which is the strongest, and so on, until "all" of the

entropy associated with the target variable is accounted for. This

is a more economical method than displaying all possible interactionms,
but Qs at present implemented will not make it apparent if two or

more relationships are only marginally different in the size of their
effect on the target variable. It would be relatively simple to allow
the researcher to specify the threshold he would accept for deciding
that one variable was so close to the value of another that both
should be displayed. Certainly there is room for the development of
algorithms for reducing the amount of computation and work in the
final stages of the analysis. This is very desirable because as the
size of the vectors rises so does the computation time, with diminishing

returns in terms of accuracy of determining the structure.

Methodological Problems

The equations and concepts involved in the application of information

theory to the analysis of complex systems have for the most part been
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developed and tested using simulated data, although there are one or two :
examples of their application to empirical data (Conant, 1972; i

Krippendorf, 1979). When they are to be applied to data from

T —

experiments a number of important methodological issues must be

considered. Chief among them are

ity

1. The amount of data required: run length.

i
| 2. The precision required: the quantizing problem.

T <

3. The shape of the window used.
4, The choice of time relatioms.
5. Methods to display the results.

6. Statistical tests of significance.

1. The amount of data required.

Since the basis of information theory calculations is

the tabulation of the relative frequency of events, the minimum
requirement is that enough data be taken to ensure that the estimation
of frequencies is sufficiently accurate. However there is no simple
rule for the amount required. This is because there is a strong
interaction between the amount of data required and level of precision
at which the values of the data samples are measured, i.e., with the
number of levels at which the values of the variables are measured.
The latter question, whether for example to use an 8-bit, 12-bit or

16-bit ADC when collecting analogue data, will be referred to here as

[} ! ' }
the quantizing problem. The most immediate effect of quantizing on ‘1

run length we have already seen. As we compute molecular interactions
even variables which as atoms have rather coarse quantizing, say 3 3
levels as in Conant's simulated data, generate many more levels as

E | higher order vectors are constructed from atoms. Hence data which may T
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be adequate for assessing the relative frequencies of atoms, and

perhaps even of binary molecules, may well be far too sparse for
measuring the relative frequemcies of occurrence of 3-tuples or

4~tuples.

Let us assume that we have a variable which takes only
two values. If we collect a run of 100 samples we might feel reason-
ably sure that we had an acceptable estimate of the relative frequencies
when the two values have probabilities p = 0.8, 1-p = 0.2 Twenty
expected occurrences may be enough to estimate l-p. But if we quantize
the same variable at four levels, each binary level being subdivided into

half, the expected value is only 10 for the rare events, and in a real

sample might well depart quite markedly from that value. If any higher
b precision is used it is quite clear that an N of 100 is inadequate even

for calculating atomic entropies, let alone molecular entropies.

Since the interaction with quantizing is so important
1 1P we will now turn to the latter, and return to the general problem of

> specifying the amount of data required afterwards.

2, The Problem of Quantizing

< Some variables are inherently discrete. If we ask an
1 observer to detect the presence of a target on successive trials ' H
or "absent”, "yes” or "no", which can be coded as 0. or 1. On the

i ’ ! sampling instants his response will be a binary variable '"present”
i
H
'
i

other hand there are variables which are inherently analogue, and whose

values must be acquired through an analogue to digital converter. The

latter in most standard systems will have 12 or 16 bit precision. But
for many applications such accuracy is far more than is required, and

would anyway put an intolerable computational load on an investigation

which required multiple correlation, and an intolerable data acquisition

/
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load on an investigation which required the operator to measure the
y | frequency of occurrence of different values of the variables. What
is an appropriate precision, level of quantizing, to give an

acceptable compromise between precision and practicality?

Conant and others who have developed methods for the

detection of structure maintain that surprisingly coarse quanti-
;'i zation can be used without a significant loss of information about
i
structure. No systematic theoretical or empirical investigation of ']
this point seems to have been made. We here present both approaches.
We wish to establish the way inwhich the value of Q, the number of -4
levels at which a variable is measured, affects T* the normalised

transmission between two variables, whether atomic or molecular. ;a
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Figure 6

Empirically the problem can be approached by computing T*
for a given set of data when Q is at a high level of precision, that
is, when quantizing is fine. We then make Q increasingly coarse, and
plot the values of T* for the coarser levels as a function of their
value at the fine level. If no change in T* is caused by the

increasingly coarse quantization the data will lie on a straight line

at 45° slope which passes through the origin. Figure 5 shows such a
plot, based on several sets of data obtained by the author and which
are used later in this paper to develop the method. It appears from
Figure 5 that as Q becomes smaller, (quantizing becomes coarser)

values above about T* = 0.3 are slightly overestimated, although not




very seriously, while values below 0.3 are progressively under-~
estimated. The underestimation appears the more serious problem,
since from the graph it seems that almost no values of T* fall below
0.1 when very coarse quantizing is used. On the other hand one
might want to argue that even if very low values of T* are stat-
istically significant, they may not be very important in explaining
the structure of the behaviour, since any variable which transmits
less than ten percent of its available information will not be an
important source of structure. This is a general problem which is
frequently overlooked in the use of statistics: an effect can be
significant without being important). From Figure 5 it seems that
providing we are interested in T* of more than about 2.0 it will be
sufficiently accurate to quantize to 4 levels, regardless of the
initiai precision with which data are collected. If we express the

results as digraphs, the difference between the structures obtained
at Q=2, Q=4, and Q=8 are shown in Figure 6. (See also Appendix C.)

It is also possible to approach the problem of identifying
an appropriate quantizing level analytically. What is required
is a test which will tell us when we are quantizing too coarsely,
and as a result the distribution of frequency of occurrences are
no longer representative of the distribution as it was when higher

Q values were used.

Consgider Figure 7, in which a Gaussian distribution is

shown quantized at three levels of Q, Q = 10, Q = 4, and Q = 2.
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The decision rule we wish to adopt is, choose the smallest
value of Q which results in a distribution of frequency of occurr-
ences which is recognisable as that one derived from the original
distribution. Clearly at Q = 10 the unbalanced probabilities in

the different cells of the histogram are recognisably those of a

Gaussian distribution. On the other hand, at Q = 2 there is no
way to decide whether the distribution is Gaussian or uniform,

since both of those distributions if split at the mode give 507

D I

entries in the top bin and in the bottom bin. This suggests a

general line of argument. When a distribution such as a Gaussian

distribution is finely quantized it can be recognised as a Gaussian

distribution because we can test the observed frequencies of

. occurrence in the bins of the histogram against the expected

< frequencies for such a Q, using a chi-square test. On such a test
our Q=10 quantized data will clearly be from a Gaussian distribution

71 and not from a uniform distribution, while at Q=2 the frequencies

would fit either distribution (or indeed any distribution which is

symmetrical about the mode). At Q=4 the distribution is detectably

not a uniform distribution, but might be either Gaussian or triangular.

The procedure with a variable from a known distribution
is therefore as follows:

1. Quantize more coarsely and compute the frequency

e &

distribution.

2., Use chi-square or another appropriate statistic to
]

' oy

test the new frequency distribution against ¢
(a) the known "parent" distribution and (b) other

distributions such as triangular, uniform, etc.

': | I .
.
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3. If the new distribution is still recognisably the
original distribution, and does not match any rival
candidates, go back to step 1 and reiterate.

If the distribution no longer matches the 'parent"
distribution, the previous Q level should be used, not

the new one. No coarser quantizing is permissible.

If the variable is measured only on a nominal scale a
slightly different argument seems appropriate. Consider Table 5
in which data have been quantized at Q = 8, Q = 4, and Q = 2. Chi-
square has been computed against the hypothesis that the frequency

distribution is uniform.

Chi-square=10.2
df = 7
0.2 >p > 0,1

Chi-square = 4.9
df = 3

Q=4 13 20 20 27 0.2 >p > 0.1

Chi-square = 2.44
df =1
0.2 >p > 0.1

Table 5.

Observed frequencies and chi-square

values at different quantizing levels.

In each row data from the previous row are merged to form
the new frequency distribution. As is apparent from the values of
chi-square, the distribution preserves its uniformity even under very

coarse quantizing.

Consider, on the other hand, Table 6, where the same process

has been carried out. Here we find that even at Q = 4 the shape of

the distribution is statistically different from that at Q = 8.

AT, Wt e e eI A e S ATy 7
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Chi-square = 10.2
df = 7
0.2 >p > 0.1

Chi-square 2 7.9

Q=4 12 17 22 29 df = 3
< 0.05

Chi-square
Q=2 29 51 df = 1
p < 0.01

7.25

Table 6.

Observed frequencies aml chi-square

values at different quantizing levels. ’ ;

Note further that the first row (Q=8) contains the same data as in

Table 6, but the cells are arranged in a different order. Consequent-

lower levels of Q. Now since we are dealing with nominal data the

order of the bins is entirely arbitrary. At Q = 8 we can rearrange

the cells in any order and obtain the same value of chi-square. But
cell orders are not equivalent in the effect they have on the

arrangement of data when it is merged to form the coarser Q levels.

If the original Q8 data are approximately uniformly

distributed we can rearrange themin such a way that any slight
departure from uniformity will be emphasised. That is what has been
done in Table 7, where the data have been rank ordered from the
highest frequency to the lowest, This will guarantee that as

coarser Q levels are used any departure from a strictly uniform

original distribution will be emphasised. If, despite this, a
chi-square test still shows the distribution to be uniform at a lower
Q we can be assured that the coarse quantizing has not distorted

the distribution of the data.

] ly the values of the more coarsely merged cells will be different at :
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This suggests a method for determining the optimal level
of quantizing approximately uniformly distributed nominal data.

1. Use chi-square to establish the uniformity of the
distribution at a high Q.

2. Rearrange the data into rank order across the
distribution.

3. Pool and quantize the data at a coarser level.

4, Test for uniformity at the new level with chi-square.

5. 1If the data are still uniform, go back to step 3.

6. If the data are non-uniform, retain the last Q level.

at which they were uniform.

The method can be adapted to other than uniform distributioms,
but the rule for maximising the departure from the expected distribut-

ion will be different, and must be chosen appropriately.

It seems in general, for the empirical and theoretical
reasons touched on above, that Q = 4 will be found acceptable for

most data.

We are now in a position to return to the question of how
much data should be collected. The following points are taken from
Conant. It should be borne in mind that we assume that the necessary
steps have been taken to establish the coarsest Q which can be used for
a particular investigation,and that we therefore have Q fixed. Conant's
treatment will be found in a paper to the Society for Gemeral Systems

Research, January, 1980.

Whatever level of transmission we are estimating, atomic,
binary molecules, 3~tuple molecules, etc., we require an average of

at least 5 occurrences of each value of the variable, whether a

scalar or vector variable, and there should be no tuples with an
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expected value of zero. (Note the similarity to the requirements
for an adequate estimation of chi~square). Conant, following Miller
(1955), argues that if each variable as quantized at level Q, and
the run length (toial number of simultaneous observations on all
variables) is m, then the highest order transmission that can
satisfactorily be calculated for the set of transmissions

T(1,2, . . . .,k:j) is that which satisfies the inequality

(k+1)

m >5.Q 11)

So for example if we have 200 samples of several
variables each measured at Q = 4, then

200 = 5.4K*D)

40 = 4 (k+1)
and only binary transmissions can reliably be estimated, (T(X:Y),
not T(X,Y:Z),)since for a relationship of the form T(X,Y:Z))k = 2,

3

k +1 =3, and 4~ = 64 > 200/5.

If not all variables are quantized to the same precision,
the rule becomes
m 25.1Q

i
where Qi is the quantizing level for variable i.

If m and k are given, (that is, for example, if we have
only 500 samples and wish to compute 3-tuple transmissions), then the
required quantizing level is given by

q = (m/S)I/(k+1)

(12)

(But of course the statistical acceptability of the value of Q

must be established as discussed in the previous section). If the

data are such that a Q of the required coarseness cannot be adequately
computed, then only lower order transmissions can be reliably estimated,

despite Conant's formulae, (which give a necessary but not sufficient

test).
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Conant suggests that for maximum efficiency the entropy of
each variable should be maximised. This requires that the width of
histogram bins be chosen so as to make the frequencies in each bin as
nearly equal as possible, even if not all the bins have the same
width. For example, given data which, under equal bin widths give
frequencies 6,2,1,2 which it is desired to pool into Q=2, the cut

should be made in such a way that the frequencies become (6,5) not

(8,3). Clearly this kind of pooling destroys the shape of the
original distribution, and changes the entropy of the variable. This

is permissible for detecting transmissions, since the changes in the

entropy of one variable does not affect the degrees of freedom of the

second variable. But in the opinion of the present writer such

pe————r 2

rearranging should only be done after the methods described earlier

have been used to find the appropriate level of Q.

3.4 Windowing and Time Relations

We now return to the problem of choosing appropriate time S
delays between variables when calculating transmissions. It will be i
recalled that measuring one variable at time t and another at t'
= (t + dt) allows us to compute the lagged transmissim which when
normalised as T* is a nonparametric measure of correlation at lag t,
and which can be either auto or cross correlation depending on whether

the two variables involved in the transmission equation are identical

except for the time shift. The relation between the values used in

such 2 calculation is indicated by the window in Figure 8. The

particular shift shown is that appropriate to measuring T(Xl,XZ:X3)
at dt = 2, and will lead to the following form of Equation (2),
T(X,X,:Ky) = H(X X)) + H(Xy) - H((xl,xz)),(x3))

The particular window setting finds one occurrence of the vector !

value ((2,2),3), out of the possible range of vector values ((1,1),1). .
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((4,4),4) at Q = 4,

Time = 1 2 3 4 5 6 7 8 9 10 N

Xy 31 f2p 114 frf2] 1] 4 2 | Q=4

X, 2 128 1 {3l 124 4] 3 4 | Q=24

X3 4 3 1 2 3 3 3 1 2 2 4 Q =4
Figure 8

It is clear that the choice of lag and the choice of
window are to some extent arbitrary. For example, we could choose
to compute

T( (X

XX ):x2 )

1 b4
t Tt+l  Tt+2 t+3
The properties of such windows have not yet been explored,

and the meaning of the more exotic is not at once apparent. It may be,
for example, that if one variable changes more slowly than another

(has a lower bandwidth), a wider window for the slower variable

would match the sampling more closely to its bandwidth than the
narrower one appropriate to a variable with a higher bandwidth. 1In

this report only windows which are extended vertically are used.

Active exploration of other windows is proceeding.

An important problem in the use of T* to reveal structure
is the appropriate choice of dt. As Conant (1973) points out in his
work on meteorclogical data, too short a value of t' means that
slow changes will not appear in the structure, while too large a
t'will filter out fast changes. If the investigator has no idea about
the relative and absolute bandwidths of the processes which he is
investigating, it will be necessary to sweep t’' systematically over

the maximum possible range, requiring a great deal of computation.




5. Methods of Displaying Structure

The discovery of significant structural transmissions
leaves us with the problem of how to display the results. When more
than four or five variables are involved this is a problem of
considerable difficulty, since w have a measure of structure at each
time lag for which the transmissions have been calculated. Omne of the
disappointing aspects of Krippendorf's method (Krippendorf, 1979)
which shows structure most elegantly in his example, is that when more
than four variables are involved the graphical representation becomes
almost impossible to draw and to understand. Since the power of the
methods is that they can in principle handle multivariate systems of
considerable complexity, a good means of displaying the molecular
structures is most desirable. Providing that the system does not turn
out to be composed of subsystems which are only loosely coupled with
each other, it may be possible to use digraphs at different levels.
Thus if we have a system which is composed of three ternary molecules
which are only loosely coupled, we could display the correlation function
for the variables within each molecule separately for each molecule,
and then display the time course of the coupling between the molecules,
without simultaneously showing the internal relations between the

atomic constituents of the molecules.

Obviously there are two straightforward ways of doing
this. One is to choose a "target'" variable, and to draw graphs of
the correlation functions of each other variable with that variable,
so that there will be as many sets of correlation functions as there
are variables. (In fact there will in general be more, since the
discovery of structure will suggest binary and ternary molecules which
should be graphed against any particular '"target" variable). Efficient

computer programs and computer searches for the best subset of functions
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is required for efficient computation, because of the very large
amount of calculation involved, and the very large number of possible

options as higher order interactions are searched.

The second method is the one we have emphasised, namely
the use of digraphs, with a separate digraph drawn at each time
delay of interest. Both methods will be used in the examples given

in the next section of this paper.

Another problem is to decidg what to represent in the
digraphs. The initial stage is to discover the statistically
significant transmissions, a problem to which we will shortly turn.
But in many cases where a very large number of samples has been
collected in order to allow the estimate of high order molecular
interaction, even very small T and T* values will be significant
due to the very large data set. Following Conant we have normalised
T to T* in the range O to 1. But if we find a T* of, say, 0.08 which
is statistically significant, should we seriously bother with it?
The contribution of such a variable to the overall properties of the
system must be minimal. When a very large proportion of the trans-
missions are statistically significant, we shall adopt the convention
of drawing digraphs for several decreasing values of T*, so that the
reader can see which variables are important and which are not. There
is no general solution to this problem, although as we saw earlier,
Conant's new method allows successive approximation to be made to

the total entropy of a chosen variable.

6. Tests of Statistical Significance

Despite the very large number of experiments which used

information theory to study human behaviour in the 1950's the




question of how to measure the absolute level of significance of a

transmission was seldom discussed. Usually measures were taken of
performance and behaviour at different levels of entropy of stimulus
variables, and the transmissions compared between conditions, using
t-tests or parametric analysis of variance. Attneave (195%) showed
that for certain kinds of variables T is related to thes correlation
coefficient by the relat%on

T = 1/(1-0)}

but his restrictions on the kinds of

variables for which this is true are too stringent for a method of the

generality we are considering.

It would seem at first sight that all that is required is

a chi-square test to establish that data are not merely randomly

distributed over the contingency matrix, and McGill (1953) has shown
that
1.3863nT(X:Y) ’

is distributed as chi-square with
(X-1)(Y~1) degrees of freedom, where n is the number of samples. But
a simple appeal to chi-square is not sufficient, since, for example,
a contingency table in which all the data are in one row of the
matrix, or in one column of the matrix, or entirely confined to the
major diagonal will all give values of chi-square which are strongly
indicative of non-randomness; but only the last of the three transmits

any imformation.

A safer approach is through the Contingency Coefficient,

C, (Seigel, 1956 p.196-202. The data are arranged in a contingency

table, in an r x k matrix (where r and k need not be identical), with

the total number of entries being N. We then compute
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rk (0,.~ E..)2
X2 = £$ 1] 1)
i=1 j=1
ij

from which
2 4
X
0 , E are the observed and expected values of the frequency data
is ..
] 1]
as usual. Degrees of freedom for C are (r-1)(c-1), and the value of
the equivalent chi-square is tested. Seigel states that a disadvantage
of C is that its maximum value depends on the size of the matrix for
which it is calculated,

¢ = (1t
)

max —_
k

but this is easily accommodated by normalising with respect to the size

of the matrix. When the latter is symmetrical, we then have
[}
cF =cfent c¥e o/
) (R
and if Q = 4, a level of quantizing which we saw is a good working
rule, the significance of C* is given in the folilowing Table 9.

Significance Level

0.05 0.01 0.001

1100 0,440 0.490 0.540

200 io.323 0.364 0.404

Run (300 10,267 0.302 0.337
lengthi, oo 10,233 0.264 0.295
500 0.209 0.237 0.266

1600 '0.192  0.217 0.243

Table 9

Values of C*, the Normalised Contingency
Coefficient, for different significance

levels and run lengths.

— o 4



AL oA 3 py G AR e LS A Al 2 G

40

A suitable test for significance for transmission
from a square qatrix is therefore given by the following steps:
1. Compute chi-square for the Q x Q matrix.

2. Compute C.
3. Compute C*.

4, Find the appropriate value of C in Table 9

and hence the significance of the transmissions.

ik
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1. The structure of behaviour im a task of increasing

complexity: 6 degrees of freedom.

In the example a perceptual motor task was carried out
under several conditions, beginning with a very simple version of
the task and gradually increasing the complexity. N = 600, and the
data are effectively averages over between 5 and 10 trials. All

variables were measured at QA' With N = 600 all except the

B i

very smallest transmissions are statistically significant at :

p < 0.01 by C*, 1In this case it is therefore most useful to ;

present the transmissions as a table, and to provide digraphs

o hovni e pend md g SN N

showing the structure of the most important significant relatioms. *

wed

In this example we present the structure of the relations at
) Tgr Tp and Te. This is for heuristic reasons only. T* can be %
calculated at any value of 1, but we are concerned in this example
primarily with the problem of displaying results when almost all

{
!
1 - the values of T* are significant by C*.
|
i
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TRANSMISSIONS AND SIGNIFICANCE TABLES

TASK 1A

(N = 300, Q)

Z

.93

.53
.35
.51
1.84

Y Z

.817 .867
.648 .576
.635 .718
.670 .628
1.000 .723
.723 1.000




TASK 1A

T secs.

0.2

.53
.21
.24
.28
.27
.49

s bind by e O

N <X} E Y

.95
.38
L4
.50
.49
.88

N = oY

.885
.638
.660
.703
. 749
.864

N < ™Y

bt}

.26
.51
.07
.59
.19
.18

.53
1.02
.13
1.18
.38
.36

. 727
.873
.401
.908
.666
.625

.27
.08
.69
.07
.23
.26

.54
.17
1.37
.15
.45
.52

.710
2446
.944
.466
.675
.714

43

.27
42
.05
.53
.16
.16

.53
.83
.10
1.03
.31
.32

.721
.798
.357
. 867
.616
.595

.26
.09
.13
.15
.37
.28

.52
.17

.30
.73
.54

.744
.506
.555
.614
.827
.722

.42
.13
.26
.15
.20
.50

.76
.23
.48
.28
.36
.92

.829
.506
.700
.563
.652
.891

T*

C*

inisie

RPN




TASK 1A

T secs.

0.5

.24
.12
.20
.16
.18
.27

N <>} = ™o

b4
.22
.35
.29
.32
.48

N <X oo

.721
.506
.604
.570
.625
724

N =< > £ 9

R

.20
.37
.04
.36
.11
.13

.39
.73
.09
.71
.22
.26

.665
.766
.305
.770
.558
.560

W

.25
.06
.52
.08
.20
.28

.49
11
1.01
.16
.39
.55

W

.700
.393
.865
477
.650
717

X

.17
.31

(.02)
.35
.08
.09

.33
.61
(.04)
.69
.15
.19

X

.609
.734
(.100)
.761
.460
494

Y

.12
.04
.09
.05
.08
.15

.23
.09
.17
.09
.16
.29

Y

.550
.358
464
.375
.484
.599

.21
.08
.21
.09
.11
.26

.39
.14
.39
.17
.20
.48

Z

.667
.433
.639
.460

.503
.734

T*

C*
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TASK 1A

T1.0 secs.

N < ¢ £ W o N < £ g

N = ¢ 5 WY

.05
.08
.15
.08
.07
.08

.10
.14
.27
.13
.13
.14

.394
.440
.531
.437
.435
.463

.05
.14
(.04)
.16
.07
.04

.11
.28
(.08)
.31
.14
.07

.386
.553
(.280)
.569
.436
.332

.18
.05
.41
.05
.10
.18

.34
.09
.79
.09
.20
.35

.609
.329
.763
.344
.513
.633

.05
.15
.06
.14
.10
.04

.10
.29
.11
.28
.19
.07

.369
.591
.340
.569
.507
.338

.08
.18
.07
.15
.05
.09

.15
.35
.13
.29
.10
.18

474
.623
.302
.579
.392
.511

.09
.07
.19
.05
.06
.09

.16
.12
.34
.08
.11
.17

L464
.428
.582
.370
.409
.483

T*

C*
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TRANSMISSIONS AND SIGNIFICANCE TABLES
TASK 1B
(N = 300, Q,)
o
P R W X ¥ z
P 1.00 .21 .13 .10 .44 .22
R .23 1.00 .39 .27 .15 .08 T*
W .14 .38 1.00 .34 .08 .05
X .10 .45 .33 1.00 .09 .07 -
Y .46 .15 .08 .10 1.00 .41
z .23 .08 .05 .07 .41 1.00
P R W X Y z
p 1.83 .41 .25 .18 .84 .43
R 0.41 1.95 .75 .49 .30 .15 T
W 0.25 .75 1.92 .63 .16 .09
X .18 .49 .63 1.84 .18 .13
Y .8 .30 .16 .18 1.92 .79
z 43 .15 .09 .13 .79 1.95
P R W X Y z ]
P 1.000 .672 .529 .493 .802 .649
l R .672 1.000 .793 .716 .620 .449 cx
W .529 .793 1.000 .762 .484 .379
X .493 .716 .762 1.000 .518 .424
Y .802 .620 .484 .518 1.000 .816
i Z .649 449 .379 .424 ,816 1.000

;_,,_,_.¥-.‘.-<.§‘—4_,=s—.4‘
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TASK 1B

T secs.

0.2

.43
.42
.25
.17
31
.14

N2y

.79
.78
J4b
.30
.57
.25

N X = ou

.799
.827
.663
.626
.746
.549

N E XD

.15
.38
.58
.31
.12
.05

.29

1.14
.60
.24
.09

.549
.802
.879
774
.560
.376

.14
.25
.42
.22
.14
.07

.27
.47
.80
41
.27
.14

.556
.660
.802
.658
.566
.450

.12
.14
.24
42
.12
.12

.22
.26
.45
.77
.20
.22

.548
.539
.683
.861
.542
.581

.36
.25
.14
.09
.41
.30

.69

.27
.18
.79
.57

.765
.691
.574
<491
.823
774

.21
.12
.08
.08
.30
.44

.42
.24
.15
.15
.59
.87

.673
.532
.463
470
.749
.855

T*

C*
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0.5

N XY NI Y

N < = ™o

TASK 1B

secs.

.19
A
.49
.30
.13
.07

.36
.86
.90
.55
.23
.13

.698
.815
.831
744
.530
.429

.16
.20
.25
.13
.20
.16

.32
.39
.49
.26
.39
.32

.635
.684
.700
.555
.652
.618

.30
.15
.19
.08
-34
.26

.57

.37
.16
.65
.49

.744

.611

.608
467
.752
.713

48

.20
.12
.10
.18
.21
.28

.36
.22
.19
.33
.38
.51

.650

.562
.509
.610
.707
.781

.15
.40
.38
.25
.11
.10

.28
.77
.73
.48
.21
.19

.551

.792
.784
.691
.522
.526

.06
.23
.25
.17
.13
.16

.11
.45
.49
.33
.25
.31

.398
.678
.682
.620
.566
.602

T*

C*
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L TASK 1B
T, .0 Secs-
P R W X Y A
p .12 .31 .30 .17 .15 .11
R .12 .21 .31 .16 .12 .10 T*
W .20 .15 .22 .18 .23 .22
X .14 .15 .20 .18 .18 .10
Y .20 .39 .30 .18 .15 .14
YA .19 .30 .20 .27 .12 .09
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TRANSMISSIONS AND SIGNIFICANCE TABLES

4
TASK 1C j
(N = 300, Q,) 1
i
TO secs.
P R W X Y Z ;
p 1.00 .16 .11 .10 .12 .17 1
R .14 1.00 .23 .07 .04 .06 f
W 11 .25 1.00 .22 .11 .06 T* i
X .10 .08 .21 1.00 .06 .07
Y .12 .04 .12 .06 1.00 .31 !
z .17 .07 .06 .08 .30 1.00
p R W X Y z
‘ p 1.94 .27 .21 .19 .23 .32
R 27 1.77 .44 .13 .07 .11
| W 21 .44 1.90 .41 .22 .12 T ,
X 19 .13 .41 1.8 .11 .14
Y 23 .07 .22 .11 1.96 .59
z 32 .11 .12 .14 .59 1.92

P R %) X Y Z

1.00 .615 .539 .489 .539 .626
.614 1.00 .700 .428 .326 .412
.539 .700 1.00 .690 .537 .420 C*
.489 .423 .690 1.00 .428 .481
.539 .326 .537 .428 1.00 .759
.626  .412 420 .481 .759 1.00 )

N} oo

miaade,




]

TASK 1C
T0.2 secs.
P
P
R
W
X
Y
Z
P
P
R
W
X
Y
Z
P
P
R
W
X
Y
VA

.41
.25
.19
.14
.12
.09

.79
.49
.37
.27
.23
.17

.831
.712
.624
577
.545
.498

.08
J44
.27
.09
.07
.07

.14
.78
.48
.16
.13

477
.869
.732
.475
.386
.413

.08
.13
.51
.18

.14

.15
.25
.96
.35
.42
.27

<479
.580
.896
.660
.683
.580

51

.10
.07
.20
.60
.13
.12

.18
.13

1.11
.24
.21

.479
.400
.668
.926
.576
.570

.13
.05
.07
.04
.40
.22

.25
.09
.13
.08
.78
.43

.563
.393
J445
.359
.820
.674

B

.18
.08
.04
.05
.29
.40

.35
.16
.08
.10
.56
.76

.648
476
.350
.395
.765
.832

Covn i . A 0k
e i ann L 2

T*

C*

DRI AN i & M0 -
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TASK 1C C
1'0.5 secs. ;
P R W X Y z !
i
P .16 .06 .13 .10 .10 .14 i
R 21 .15 .04 .08 .09 .13 :
W .32 .15 .19 .18 .06 .07 T* !
X .20 .10 .10 .32 .05 .06 f
Y .06 .17 .40 .18 .12 .10
z (.03) .10 .24 .18 .08 .09
P R 1) X Y Z §
P 30 .10 .25 .18 .21 .26 ?
R 42 .27 .08 .14 .18 .26
W .62 .26 .37 .33 .12 .13 T
X .38 .18 .18 .58 .10 .12
Y .12 .29 .76 .33 .23 .18
z (.07) .19 .45 .33 .16 .18
P R W X Y z
P .590 .355 .537 .510 .526 .579
R 676 .572 .341 .444 .523 573
W .764 .598 .655 .608 .424 .451 c*
3 X .705 .499 .526 .762 .377 .450
‘ Y .420 582 .814 .659 .538 .488
z (.301) .497 .690 .674 .467 .513 ¥
| :
1 p
|
i ]
; |
. by
| ¥
fv
(
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TASK 1C
Tl.O secs.

P R W X Y z
P .05 .12 .12 .04 (.02) (.01)
R .06 .07 .07 .06 .08 .08
W .17 .04 ,06 .11 .08 .11 T*
X .09 .09 .10 .11 .07 .07
Y .23 .18 .17 .14 .05 .04
z .23 .16 .16 .08 .05 .03

P R W X Y z
P 100 .21 .23 .07 (.04) (.02)
R 120 .13 .16 .11 .16 .16
W .33 .08 .11 .19 .16 .22 T
X .18 .15 .19 .19 .14 .14
Y 45 .33 .32 .25 .10 .07
z 44029 .30 .15 .10 .GY

P R W X Y z
p L4046 524,541  .339 (.252)(.140)
R .387  .433 457 .394 487 L4677
W .632  .336 .406 .526 .472 .556 C*
X .527  .451  ,471 495 .452 465
Y .700 .642 ,613 .564 .384 .340
z .683 .582 .587 .476 .395 .334

B e ARy
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} l TASK 1B { STRJICTURE DIGRAPHS
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Discussion

The

ur.

1.

structure digraphs show several interesting features

In tables 1A and 1B there is some degree of independence
between two "molecules”, {Z,Y,P} on the one hand, and
{R,W,X} on the other. In 1A this description is very
clear for two binary molecules. It is obvious that
{z,P} and {R,X} are independent of each other, but that
their "atoms'" are' tightly coupled within each molecule.
Only when we include normalised transmissions below

0.2 do more rich interconnections appear. Even in

task 1C this seems to be the basic structure:

To.2° T > 0.2 {Z,Y} is driving the other set of
variables through W, which is directly coupled to R
and X, and indirectly to P.

W appears to play a central role in determining the
behaviour. In 1A it is an independent atom which
still shows an inertial effect at Ty .o Secs., long
after other effects have disappeared. In 1B it is a

source at Ty.20 2 coordinator at Tt , and a sink at

0.5

50 In 1C it is the link by which {Y,2} drives the

rest of the system at To.2 and a sink or link at

To.5°

A very obvious feature is the relative predominance of

independent atoms in {C at t All the strong effects

0.2°

are independent. Only when these inertial effects

have died away at T do a very few interconnections

0.5

appear, and unlike tasks 1A and 1B there are no mutual

effects; these are unidirectional. Thus the way in

3
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which the control of task 1C is organised is much

simpler than that of the other two tasks. There is
E less interaction among the variables and current

values of one variable affect others for a much

shorter time.
4, Task 1A is dominated by atom W and the relation

between R and X which is strong, bidirectional and

and long lasting. {2,P} dies away quickly, while W
. remains the dominant determinant of system behaviour
for over a second.
» 5. Task 1B shows a feature not shown so distinctly by
the other tasks, namely a shifting pattern cf organisat-
ion which can be interpreted as cyclical activity. We
have already noted that W acts as a source, a coordinator,
and a sink in turn, But this is also true of other
variables. If we compare T* > 0.3 at 0.2, 0.5 and
T1.0° we see that early on there is a net flow of
information from {X,W,R} to {Z,Y,P} at 0.2, which is
At

reversed at T this is apparent even at

T0.2

low transmissions, since at T* > 0.2 all the arrows

1.0°

. connecting {X,W,R} to {Z,Y,P} flow from the former to

the latter. In other words, if we think of behaviour

3 starting at some arbitrary instant, the first thing
we will see is {X,W,R} determining wha happens to
i
l {X,Y,P} (and some inertial effects); then a moment when ;
3 there is mutual influence of earlier values of each set - i

F on the other; and then a period when {Z,Y,P} determine

the values of {R,W,X} in the absence of inertial effects.*

* Remember that at 1 one cannot think of the earlier effects as no
longer existing: but their new values will be affecting new values

at 15 , 'TO.E' The "single trial” described here is a fiction in a
continudus task.
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6. Comparing the flow of information in the three tasks

allows us to make some estimates of transmission delays. h
Suppose, for example, we wish to know how long it is
before a change in W affects Z strongly (T* > 0.3), in

Task 1B. A there is no direct link between W and

£ 7%.2
Z. There is a weak link between W and P, and a very

strong link between W and R. The shortest path would

be (WP > 2) for a weak effect or (W+ R+ Y or P > 2)

for a stronger effect. Since t = 0.2, each of these

links is a 0.2 second delay, and an estimate of the time

taken for the effect of W to reach Z is (0.2 + 0.2) = O'Asecs.
for a weak effect, and (0.2 + 0.2 + 0.2) = O'Gsecs. for

a strong effect. If there were a strong (W + Z) link at

To.5 this would shorten the transmission delay, but

there 1is not.

Similarly one can compute loop delays on a single variable.

W will affect itself continuously due to the inertial

effect; but there is also a 0.4 sec. loop (W > R = W),

and a weak 0.7 second loop (W + P + W), in which the first

delay is 0.2 and the second is 0.5 seconds. **
7. Comparing the overall structures shown in the digraphs, and
ignoring the inertial effects for the moment, we might

tend to summarise the picture of causality as follows,

bl Note that for expository purposes here we assume that
1 < 0.2 can be ignored in calculating delays. This is not in
general true, although in 1B it seems likely that there is no
direct effect of Y on W before a time t such that 0.2 < t < 0.5.
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In 1A the most important organizing principles which
determine the pattern of behaviour are the persistent
inertial effect of W on itself, and the mutual inter-
action between R and X to form a tightly coupled
molecule, {R,X}. In Task 1B it is the interaction
between the molecules {R,W,X} and {P,Y,Z}. 1IN 1C it
is the driving of the rest of the system by (Y,Z},
with a persistent independent 1inertial effect of X

on itself.

Having seen these results, how are they to be interpreted?
At this point we can refer to the physical identity of the variables.

The tasks were all variations on that shown in Figure 9 .

The operator manipulated a 6-degree~of-freedom teleoperator,
the slave being approximately 2 metres from master. A pen was held in
its clamped tongs, and was used to draw patterns on a sloping easel.
Task 1A was to draw a straight line approximately 50 cm long from
left to right horizontally across the easel. Task 1B was to draw a
circle approximately 30 cm in diameter. Task 1C was to draw the
circle while the easel was moved to-and-fro from side to side in the

X-axis (orthogonal to the line of sight).

The movements of the master/slave are labelled P (wrist
pitch, up and down as in raising a pen while writing on a table); R
(wrist roll, as when rotating the wrist about the long axis of the
fore-arm); W (wrist yaw, as when drawing a line on a horizontal
surface while resting the fore-arm on the surface). X(movement of
the entire arm/hand from left to right orthogonally to a line-of~sight

straight ahead); Y (moving the whole arm/hand towards or away from

the operator, as when putting the hand through a window in front of

oneself); and Z (moving the entire arm/hand vertically up and down).

i SRR P ey e
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In Task 1A the strong {R,X} relationship is clearly
due to the necessity to move the entire hand across the easel to draw
the line. X accomplishes the main movement, but R is needed to keep
the pen in contact with the surface at the extremities of the move-
ment, W similarly is a hand movement in the X dimension. The {Z,P}
molecule suggests that the movement was not exactly horizontal, but
was slightly slanting. This would, because of the inclined easel,
move the hand up and away or down and towards the operator simultan-
eously. .he P would compensate for slight vertical Z by dropping
the wrist as the arm rose. The fact that the molecule is {Z,P}
rather than {Z,Y} suggests that the magnitude of the vertical error

was small. A large vertical error would require {Z,Y} coupline

rather than {Z,P} coupling to compensate.

The latter point is confirmed by the structure of Task 1B.
The coupling of {P,Y,Z} to form a simple molecule makes sense as a
system to control the 'up—and-away' 'down-and-towards' movement.
(The tilt of the board forces the coupling between Y and Z) Moreover
the fact that {P,Y} are mutually coupled, (both being vertical move-
ments) and that Z is driven therefore by both of them, makes intuitive
sense. {R,W,X} on the other hand are all concerned predominately with
movement in the horizontal plane, with{W,X} driving R which compensates:
to keep the pen on the paper as the movements become large and tend to
roll the arm over. The fact that at short delays the horizontal motion
pushes the vertical motion, while at long delays the reverse is true
may reflect a tendency in the operator to make some parts of the circle
faster than others. If he were to draw the top and bottom quadrants

of the circumference rapidly, and the side quadrants slowly, the time

sequence in 1B would result. Task 1C is particularly interesting.
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One might have expected strong coupling between X and the other atoms

because of the imposed lateral movement of the easel. This is not the
case. Instead, there is little coupling from X to the other variables,
but a persistent inertial effect. This suggests that the operator was
not synchronising his circular motion with the imposed horizontal
motion, but that the two motions were uncorrelated. The other note-
worthy feature of 1C is the extreme simplicity of the digraphs. To

a large extent the way in which the operator carries out the most
complex task is to become a set of independent variables, each having
inertia, but influencing other variables only to a slight extent.

This is at first sight surprising - surely a complex behaviour should
produce a great deal of interaction? Consider, however, what it

feels like to control an automobile when first learning. Rather than
integrated behaviour the actions are controlled serially, one at a
time. If the transitia probabilities between variables are such that
transitions are effectively random, then the time averaged behaviour
will appear as due to independent variables, although they are used
serially. Independent parallel variables would differ not in their
structure digraphs but in the bit rate for the system as a whole. The
serial independent system will have a channel capacity which is the
average of the individual variables, while the parallel independent
system will have a channel capacity which is the sum of the individual
variables' capacities. The necessary calculation can readily be
performed on the data from which the digraphs and tables of T* are
constructed, but are not directly shown in the digraphs. (A similar
point occurred in 1A. While both{P,Z} and {R,X} are very important
causes of behaviour, the first represents only movements of a very

small magnitude, while the latter represents movements of large
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magnitude., These cannot be distinguished in the digraph).

2. The Structure of Behaviour under the influence of Practice:

six degrees of freedom.

In this task a single operator drew a circle five times,
during which data were collected. He then practised the task for

100 trials, at the end of which data were collected on another five

circles.

In this case the data are presented only as tables of i
normalised transmissions, T*, although the significance tables ]
of C* were calculated as before. The bracketed values in the tables

are not significant,

The data are also presented graphically as correlation
functions, with each variable in turn regarded as a source. Thus
the correlation graphs show normalised transmissions from a source

variable at time t, to target variables at times t + 1, with t + 7

on the abscissa.
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NORMALISED TRANSMISSION TABLES

TASK 2A
N = 200, Q, |
To
P R W X Y z
P 1.00 .25 .25 .21 .29 .28
R .25 1.00 .12 .22 .15 .19
W .19 .09 1.00 (.03) .12 .14 T
X .20 .21 (.03) 1.00 .11 .14
Y .29 .15 .16 .11 1.00 .63
g z .26 .17 .17 .13 .59 1.00
TO.l secs.
p R W X Y z
P .78 .22 .27 .19 .32 .32
R .28 .64 .13 .19 .17 .19
: W .18 .09 .89 (.03) .11 .14 T*
X .23 .26 (.04) .76 .12 .14
Y .26 .14 .17 .11 .75 .60
1 z .23 .18 .15 .14 .60 .77
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TASK 24
Ty.4 S€cs. 1
P R W X Y Z s
P .48 14 .28 .14 .40 .47 | 1
R A1 .3 .17 .12 .25 .29 D
W 15 .12 .74 .05, .12 .12 T#*
X .28 .35 (.04) .47 .19 .15
: Y .20 .11 .16 .13 .41 .40
z .18 .12 .13 .19 .44 .46 !
k
Tg.g S€cs. ) i
P R W X Y Z
P .37 .12 .28 .12 .43 .49
R .36 .23 .13 .08 .31 .35
W .14 .13 .66 .07 .11 .10 T* | 1
X .35 .40 (.05) .32 .24 .20 R
Y .22 .08 .14 .17 .28 .28
z .18 .08 .11 .21 .33 .33 ,
, |
Ty.g Secs. R
8 , j
j P R W X Y z |
| |
E | P .29 .12 .28 .15 .40 .47
1 ‘ R .30 .15 .17 .09 .37 .45
| W .13 .12 .60 .07 .09 .08 T*
| X L4400 035,07 .26 .29 .27 ]
; Y .21 .07 .11 .23 .19 .19
= z .13 .06 .09 .21 .25 .23
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l TASK 2A
' Tl.O secs. ;
P R W X Y z ]
I p .23 .09 .28 .16 .33 .40
R .25 .10 .22 .09 .41 .47
: W 13 .09 .55 .09 .08 .06 T*
i ‘ X .49 0 .31 .09 .19 .31 .35
_ Y 15,09 .12 .28 .14 .15
{ l z 13 .09 .09 .28 .16 .17
‘ 11.5 secs.
P R W X ¥ A
' .16 .06 .17 .28 .15 .20 : i

.09 .04 .19 .15 .33 .31
.14 .08 .52 .09 .06 (.03) T*
.42 .19 .16 .17 <44 .61
.11 .16 .09 .41 .09 .06
12 .13 (.05) .44 .07 .07

N <>z o

12.0 secs.

.24 .24 .11 .36 .09 .08 1
.21 .29 (.04) .36 .08 .08 |

P .09 .14 .11 .43 .07 .11
. R (.03) .05 .17 .23 .16 .15
w .16 .10 .50 .07 .09 .06 T*
X .22 .06 .15 .21 .37 .40
Y
Z

abn e,
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] ..
E | NORMALISED TRANSMISSION TABLES S
TASK 2B
N = 200, Q, . ﬁ
TO secs. -
. P R W X Y z u
P 1.00 .08 (.04) .25 .34 .27
R .06 1.00 .07 .26 (.04) .10 -
W (.03) .07 1.00 .10 .10 .06 T* 1
X .23 .28 .10 1.00 .10 .28 *
Y .33 (.05) .12 .11 1.00 .29
z .27 .12 .08 .31 .29 1.00 ;
‘1‘0.1 secs.
P R W X Y z
P .63 .07 (.04) .25 .35 .32
R .07 .60 .08 .24 .05 .07
W (.03) .05 .8 .10 .09 .05 T* o ¥
X .18 .28 .09 .69 .10 .19 '}
Y .32 .05 .12 .12 .60 .36 ‘
yA .22 .14 .07 .29 .27 .64
{4
10.2 secs. } j
P R W X Y yA
P 45 .09 (.05) .20 .37 .41
R .10 .40 .07 .22 .07 .06 -
W (.01) .04 ,70 .10 .07 .05 T* 1
X .18 .27 .09 .52 .13 .17 |
Y .30 .06 .11 .16 .40 .41 .
z .20 .16 (.07) .32 .24 .50
p) .
3
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] TASK 2B :
j T0.4 secs.
, P R W X Y z
1
v P .30 .12 .08 .21 .30 .61
R .15 .24 .08 .16 .13 .06
W (.02) (.03) .58 .11 .04 (.04) T*
- X .29 .21 .10 .36 .22 .15 1
Y .20 .12 .12 .27 .21 .40 i
z 23 .24 .05 .49 .19 .33 !
!
i
Ty, S€CS %
P R W X Y VA , ;
‘ b
P. .20 .15 .07 .31 .28 .73 b
R 17 .11 .12 W14 .21 .09 f
W (.03) (.05) .49 .09 .05 (.03) T* ‘
X 43 .12 .11 .23 .34 .20 L]
§ Y 1460 .23 .17 .29 .15 .28 g
' - z .18 .32 (.04) .66 .12 .22 ]
TO.8 secs. {
;. P R W X Y z
1
5 P .16 .18 .08 .41 .26 .29
! R .15 (.03) .14 .11 .20 .18
W .06 (.03) .41 .08 .06 (.03) T* :
- X .48 .06 .12 .15 .44 .30 3
Y .11 .28 .14 .35 .17 .20
ya .16 .36 (.04) .55 A3 .17




i TASK 2B

T secs.

1.0

.17
.11
.06
.35
.15
.23

N < &£ v

1.5 secs.

.25
.08
.08
.20
.23
.40

N < =0

2.0 secs.

.34
.10
.05
.17
.18
.13

N < E W

.30
(.04)
(.05)

.08

.29

.27

.21
.18
(.04)
.18
.14
.06

.06
.14
.11
.36
.15
.15

W

.08
.14
.35
.13
.11
(.03)

W

.11
.08
.27
.16
.12
.07

.10
.07
.23
.17
.14
(.06)

70
X Y
.58 .22
.08 .17
.06 .05
.16 .47
.34 .13
.30 .19
X Y
.25 .20
.21 .09
(.04) .08
400 .19
15 0 .22
.06 .47
X Y
a1 .37
Jd2 0 .12
.09 .09
430 .13
.09 .23
.27 .28

.20
.20
.05
.46
.15
.14

.35
.09
.08
.14
.25

T*

T*

T*
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EXAMPLES OF THE STRUCTURAL ANALYSIS OF

71

BEHAVIOUR USING INFORMATION TRANSMISSION

|
4
1
NOTATION
Tables are always presented with its variable at t on the
left of the table, and at t+T on the top of the table. # ;
Qn « « « « « « The number of levels at which a variable is measured. !

™ .. ...

cx . . ...

In

sampling was

20 seconds of data.

Q2 is a dichotomous variable; Q4 a tetrachotomous
variable, etc.

. The delay at which transmission is calculated.
L is transmission between variables measured at the

same moment, 9.5 is transmission measured between
one variable and another whose value was measured 0.5

seconds later than the first.

. Transmission in bits.

. Normalised transmission: O < T* < 1.0

. Normalised Contingency Coefficient: 0 < C* < 1.0
All values shown in a table are significant at
p < 0.01 except those enclosed in brackets.

. Number of samples on which calculations are based.

(= run length).

all the following examples except one, ("selective attention")

at a rate of 10 Hz’ so that if N = 200 this represents
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Discussion

From the transmission functions three main differences

between unpractised and practised operators appear.

1.

The unpractised transmissions remain high at longer
delays than the practical transmissions. This is
particularly clear when looking at the inertial effects
(P +P, R> R, eteg). Without exceptic: the rate of
decay is faster in the practised condition. Note that
this clarifies our use of "imertial". It is not the
mechanical inertia of the system, (which cannot change
with practice), but the formal inertia - the tendency

of the value of a variable to continue to affect its
future values. The more rapid decay in the practised
conditions means that future values become independent of
past values sooner. The practised operator has a more
'flexible' system, which is more rapidly adaptable.

On the whole the magnitude of transmissions between
variables is 1less in the more practised condition. This
is particularly true for the variable W, which shows
virtually no transmission to R, P, or Z when practised.
Similarly R -+ P, R+ Y, and R + Z all show considerable
reductions. This suggests that as practise continues
the variables become increasingly independent of each
other.

The only prominent exceptions seem to be cases where

a peak develops for some non-zero value of 1. For
example Z + X and Z - R both show a change from
transmission function which indicates a prolonged effect

of the source on the sink variable which is fairly




uniform out to T = 2.0 seconds. But after practice

Z - X in particular shows a very strong peak at

T = 0.6 secs., while Z - R is developing a peak
centered on T = 0.7 secs. This suggests that

whereas initially anything the operator does has a
lengthy and widespread effect on other variables,
suggesting an uncontrolled and disorganized system,

the effect of practice is for certain effects to become
well organized around some perhaps optimal timing

pattern.

Overall the effects of practice thenm are to make variables
more independent, and where they are not independent, to make the
timing of the inter-relations more precise. Anyone familiar with
traditional literature on perceptual-motor skills will recognize that
these are precisely the claims that have traditionally been made about
the difference between the skilled and unskilled operator; but they
have been asserte] far more often than demonstrated, and have never
been convincingly demonstrated for very complex, ''maturalistic', tasks.

Information transfer methods appear able to do this.

3. The structure of behaviour under prolonged practice:

7 degrees of freedom.

The results of the previous demonstration suggest that with
prolonged practice a complex man-machine perceptual-motor skill might
show almost complete decoupling, and the emergence of a parallel
processing multivariate system. This again is a common claim made by
writers on skill, but with little or no direct experimental evidence.
To investigate it, two operators were required to perform a realistic

task using the teleoperator. A steel pipe about 40 cm high was
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provided, on the right hand side of which (as viewed by the operator)
a hexagonal brass screw-on cap covered a fitting. The brass cap was
approximately 2 cm in diameter. The operator was required to grasp,
unscrew, and remove the nut as rapidly as possible. The data from
one operator were collected on the first five trials on which he
attempted the task, and the data from the other operator after about
10 hours practice at the task. Both were required to perform the

task as rapidly as possible.*

In each case the T*, T, and C* values for each run were
calculated, and then averaged. The means and variances are given in ’ 1

the tables, and the transmission functions are based on the means. 4

The additional variable T in the position of the tongs from
fully open to fully closed as the nut is grasped and turned to unscrew

3
‘ it. ;

i * Tt was intended to take 5 operators and to obtain data from ' ]
| each during prolonged practice, but the demise of the Interdate.
computer and the lack of time to implement the PDP-11
system prevented this. |
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TASK 3A UNPRACTISED OPERATOR

Bracketed values are not significant

| N = 200, Q,
TO secs. i
T P R W X Y z
X 1
i T 1.00 .10 .16 (.07) .10 .08 .07 ¢
/ P .08 1.00 .63 .26 .23 .17 .40 b
R .11 .59 1.00 .28 .22 .19 .35  Mean T* i
W (.05) .20 .23 1.00 .15 .20 .18 s
X .07 .22 .23 .17 1.00 .12 .16 .
Y .06 .19 .23 .24 .13 1.00 .21 :
z .06 .42 .39 .24 .18 .19 1.00
T P R W X Y z
T .00 .07 .02 .03 .05 .l4 .08
P .00 .03 .01 .16 .02 .07 .07 s.d. T*
R .03 .00 05 .06 .15 .09 .02 (rounded to
W .01 .05 .00 .08 .06 .08 .03 2 decimal
X .16 .06 .08 .03 .12 .09 .05 places)
Y .02 .15 .06 .12 .00 .08 .l4
z .07 .09 .08 .09 .08 .00 .08
10.2 secs. 1
4
T P R W X Y z :
T 229 .19 .26 .16 .13 .12 .11 :
P .08 .39 .34 .24 .22 .15 .32  Mean T* I
R .08 .38 .43 .25 .24 .15 .32
W .07 .14 .16 .62 .13 .12 .13 :
X .08 .14 .15 .16 .28 .09 .11
Y .06 .15 .14 .19 .12 .40 .16
z .08 .28 .21 .24 .16 .16 .40
T P R W X Y z
.06 .12 .10 .04 .09 .08 .07 3
.04 .05 .02 .13 .08 .11 .08  s.d. T* :
.09 .06 .03 .08 .05 .14 .02 -
.07 .05 .04 .12 .03 .12 .02

.08 10 .12 .24 .18 .19 .10
.05 .13 .17 .17 .08 .13 .13
.07 .11 .10 .10 .09 .01 .09

-
N<>X X oo
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1
. TO.S secs_
T P R W X Y Z
T .15 .30 .36 .17 .14 .12 .19
3 .14 .13 .09 .13 .17 .08 .13
R .13 .11 .13 .11 .19 .08 .12 Mean T*
W .08 .10 .10 .24 .17 .12 .07
X .09 .08 .10 (.07) .10 .07 .07
Y .09 .10 .09 .09 .15 .21 .09
z .17 .11 .07 .12 .16 .09 .l4
| T P R W X Y Z =
T .05 .07 .20 .10 .20 .10 .12
P .07 .04 .05 .14 .06 .09 .05 s.d. T*
R .07 .16 .10 .18 .11 .14 .09
W .07 .15 .12 .13 .08 .12 .07
X .10 .18 .19 .29 .11 .19 .15
Y .07 .08 .08 .21 .17 .16 .13
z .05 .18 .14 .18 .07 .07 .09
Llo secs.
T P R W X Y z
T .12 .11 .13 .10 .13 .10 .10 ;
P .10 .10 .09 .10 (.07) .07 .07 J
R .11 (.07) (.08) (.07) (.07) (.05) (.06) {
‘ W .07 .07 .09 .15 .09 .11 .07 Mean T* ]
! X .06 (.07) .09 .08 (.07) .07 .07 b
j Y .08 .11 .10 .10 .07 .13 .10 i
| z .10 .11 .11 .13 (.07) .08 .08 {
i
) T P R W X Y A :
I
; T .04 .10 .13 .08 .16 .04 .09 )
P .06 .10 .11 .16 .05 .15 .10
, R .06 .13 .04 .14 .08 .09 .16 %
: W .06 .04 .07 .12 .08 .04 .12  s.d. T* 4
X .13 .04 .11 .25 .12 .13 .07
Y .11 .04 .04 .16 .12 .09 .09
z .09 .10 .09 .15 .06 .16 .10
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| 5
l TI.S secs.
T P R W X Y z
l T .09 .12 .13 .12 .09 .08 .09 k
P .09 .10 .12 .10 .10 (.06) (.07) B
R . .08 (.09) .10 .08 .09 (.04) .07 Mean T* .
W (.04) (.06) (.06) .12 .08 .08 .09
X (.05) (.07) (.09) (.07) .09 (.05) (.07)
Y .06 .09 .09 .12 .10 .09 .l1
] z .10 .10 .12 .10 .09 .08 .09 1
q
T P R W X Y z {
J T .05 .07 .12 .12 .17 .08 .09 1
P .11 .03 .05 .12 .08 .11 .05
1 R .14 .08 .05 .13 .08 .03 .05 s.d. T*
3 W .10 .05 .03 .11 .11 .06 .07
. X .04 .10 .10 .24 .18 .06 .15
Y .07 .08 .09 .13 .08 .10 .05
! Z .10 .10 .11 .13 .09 .05 .16 !
3 12.0 secs.
T P R W X Y z
i
t - T .08 .08 .10 .10 .10 .05 .09 _
P .06 .08 .10 .08 .07 .07 .07
i - R .04 .07 .09 .06 .07 .06 .06  Mean T* e
! W .05 .05 .05 .10 .07 .08 .08
X .07 .06 .07 .07 .07 .06 .06
- Y .06 .08 .08 .08 .08 .06 .08
\ z .07 .11 .11 .10 .10 .09 .08
f T P R W X Y z
j
x T .05 .06 .06 .07 .16 .07 .05
‘ P .10 .09 .11 .08 .04 .09 .06
R .06 .12 .09 .11 .06 .10 .08 s.d. T*
W .10 .08 .08 .09 .07 .09 .07
! - X .13 .07 .10 .21 .14 .15 .16
= Y .14 .09 .09 .16 .09 .12 .07
., vA .10 .13 .06 .12 .14 .16 .08

—

e A

]
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TASK 3B PRACTISED OPERATOR e
N = 200, Q, i
!
T, secs. 5
T P R W X Y z é
T 1.00 (.04) .08 .05 (.04) (.04) (.04) :
P (.03) 1.00 .19 (.03) .06 (.02) .08
R .06 .22 1.00 .08 .14 .07 .13 Mean T*
W .05 (.05) .10 1.00 .09 .11 .08
X (.03) .09 .15 .08 1.00 .05 (.05)
Y (.03) (.04) .08 .11 .05 1.00 (.06)
z (.03) .08 .13 .07 (.05) (.05) 1.00
T P R W X Y z
T 1.00 .04 .16 .05 .13 .04 .13 -
P .00 .07 .05 .10 .02 .04 .O4 ]
R .07 .00 .08 .09 .07 .03 .16 s.d. T*
W .05 .08 .00 .10 .02 .03 .05 -
X .10 .09 .10 .00 .10 .12 .13
Y .02 .07 .02 .10 .00 .02 .04
vA .04 .03 .03 .12 .02 .00 .13
TO.Z secs. ]
T P R W X Y yA
T 146 (.04) .19 (.04) .08 (.05) (.04)
P .07 .06 .06 (.04) (.04) (.03) .07 ﬁ
R .13 .06 .18 .06 .17 (.03) .06 Mean T* i
W .10 (.03) (.05) .24 .09 .11 .07 i
X .10 (.05) (.06) .06 .13 (.05) .04 |
Y (.04) (.05) (.03) .07 .07 .21 .09 |
z .08 (.03) (.04) (.04) .06 (.05) .23 P
' T P R W X Y z
T .09 .02 .02 .03 .09 .02 .12
P .17 .02 .20 .08 .03 .06 .04 |
R .08 .09 .02 .15 .03 .02 .04 s.d. T* [
W .06 .08 .21 .13 .20 .03 .06 y
X .01 .03 .07 .24 .06 .07 .23
Y .02 .06 .07 .12 .15 .07 .16
z .11 .10 .04 .04 .09 .25 .25
N li
~ )




r ] I TO.S secs.

N=<>XovA

N E oo

] O'SEC.

N =9

N>} mdH

.08
.06
.17
.06
.07
.05
.07

.03
.09
.06
.06
.12
.04
.08

(.04)
(.03)
.13
.05
.13
(.04)
.05

.02
.07
.04
.08
.08
.10
.07

PN NN N N~

.06

.04)
.03)
.02)
.06)
.05)
.03)

.03
.03
.04
.04
.04
.03
.08

.12

.03)
.04)
.06)
.03)
.04)
.04)

.07
.03
.08
.09
.09
.05
.07

.14
.08
.12
.09
.11

(.03)

(.05)

.08
.14
.05
.15
.05
.03
.02

.20
(.02)
.08
(.03)
(.02)
(.02)
(.03)

.07
.07
.04
.10
.08
.03
.05

W

.07
(.03
(.03

.12
(.04
(.04
(.04

W

.01
.12
.09
.04
.15
.03
.05

W

(.02
(.03
(.05

.10
(.04

.06
(.05

W

.09
.09
.08
.07
.09
.15
.07

X

.16
) (.05)
) (.05)

.06
) .06
) .06
) (.03)

X

.04
.10
.10
.03
.06
.06
.14

) .12
) (.03)
) .07
(.03)
) (.06)
(.04)
) (.04)

.06
.04
.10
.11
.06
.15
.03

(.
(.

P W Wan)

.04)
03)
02)
.11

.05)
.11

.05)

.09
.03
.03
.09
.07
.04
.14

.04)
.01)
.03)
.07
.07
.08
.06)

.09
.12
.08
.13
.08
.10
.10

Z

(.04)
.06
(.03)
.07
.06
.10
.10

Z

.12
.03
.07
.05
.22
.10
.25

Z :

(.06)
(.02)
(.04)
(.06)
(.02)
(.03)
(.05)

A

.16
.12
.07
.06
.04
.06
.06

Mean

s.d.

Mean T*

s.d.

T L A T U AT s O SR ks

T*

i Ut N T el O b e b s - b

T*

T*




N oY

N ==

N R E™d A

N < E o

secs.

.14

.01)
.03)
.04)
.05

.03)
.03)

.08
.14
.07
.06
.07
.03
.10

.17
.02)
.05

.03)
.04)
.04)
.03)

.22
.28
.08

.16

.09
.07
.14

P

(.04)
(.03)
.06
(.05)
(.06)
(.05)
(.06)

P

.05
.03
.18
.06
.04
.03
.10

(.05)
.07
(.06)
(.05)
.08
(.03)
(.04)

.09
.09
.31
.10
.15
.11
-10

R
.06

.19
(.04)
.10
(.05)
.07

R

.11
.10
.05
.10
.10
.13
.03

.08

.22

(.05)

.10

(.02)
(.04)

.05
11
.08
.22
.06
.07
.05

W X Y

(.03) (.03) (.03)
(.03) (.03) (.03) (.03)
(.05) .13 (.02)
.09 (.05) .07
.05 .08 (.05)
.06 (.05) .08
.05 .06 (.05)

(

.02 .03 .10
.14 .05 .09
.14 .10 .11
.04 .12 .05
.03 .06 .15
.03 .07 .03
.10 .07 .07

.05) (.

(.
.21 .07 .08
(.
.08 (.05) .20
.07 (.05) (.03)

W X Y
.04) .07 (.02)
03) (.04) (.03)
03) .10 (.05)

W

03) .17 .05

X Y

.10 .09 .12
.03 .06 .03
.07 .13 .03
.06 .22 .15
.35 .06 .11
.07 .28 .02
.18 .00 .32

(.05)
(.03)
(.05)
.09
(.05)
.07
.06

.06
.05
.07
.12
.12
.12
.04

Z

(.04)
(.02)
(.05)
.08
(.05)
(.04)
17

2

.02
.06

Mean T*

s.d.

Mean

s.d.

T*

T*
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Discussion

The difference between the two sets of data are dramatic,
and confirm the model for skill outlined at the start of this
experiment. In the novice data, as in Experiment 2, most variables
affect all other variables to some extent, and the effects last for
a very long time. In the expert there is almost complete decoupling,

and what strong effects there are are of short duration or have a

well defined peak. Inertial effects have a much shorter duration in
the expert. These differences are also apparent in the selection of

structural digraphs presented above. The present method of analysis

provides excellent evidence for the’classical claims about the nature
of skilled performance, even in a task of a complexity not amenable
to analysis by conventional methods.

4., The structure of attention, the analysis of static relations in

single trial selective listening experiments

The basic details of this experiment, which was published

by Moray, Fitter, Ostry, Favreau and Nagy (1976), were given in the
introduction, and for full details the original paper should be
consulted. Three very highly practised listeners heard trains of
pure tone bursts of 100 mecs duration. In the first condition most
of the signals were approximately 60 dB above .0002 microbar, but an
increment of 1 dB or 3 dB could occur with a probability of 0.1.

One train was presented to one of the listener's ears, and the

other to the opposite ear. The trains were of very different
frequencies. The listener pressed a key whenever he heard a target. A

The trains came at 2 signals/ear/second. In the second condition

each train was presented to both ears, so that there was no

azimuthal separation of the sound images: the inputs were binaural,

not dichotic as in the first condition. In the third conditionm,
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dichotic presentation was used, but one train contained increments
in intensity as before, while the other contained increments in
frequency of approximately equal detectability. In each case half
the targets occurred at the same moment that a target occurred on
the opposite ear: the targets were not statistically independent.
Although many other conditions were used in the original experiment,
we here present merely structural digraphs, with their pathways
labelled with the associated value of T* to show how information
transmission analysis can be used in one setting which is very

different from continuous perceptual-motor skills.

The digraphs are shown on the following pages.

Discussion

Since the experiment is essentially a series of single
trials it does not make sense to compute the transmission functions.

The digraphs are therefore restricted to the "static" (To) relations.

The two conditions with intensity increments on both
channels show little effect of making the targets more discriminable,
other than, as would be expected from increasing the S/N ratio, an
increase in T* in the relation between each input and its correspond-
ing response, (A + C, B = D). The small but constant input coupling
A< B reflects the non-independence of targets already mentioned,
and the occasional strong coupling C Da tendency to press both
response buttons at the same time. Almost no significant cross talk
(A > D, B> C) occurs, which is what would be expected from signals
widely separated in pitch, and hence outside each other's critical
band. In the third condition however there is a considerable increase

in the B + C transmission for more detectable targets, but not in the
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A > D. This suggests that making a judgment about pitch can

influence judgments about intensity, but not vice versa.

The use of information transmission analysis on a system

as simple as this seems to add little to more conventional methods

such as used by Moray et al in their original paper; and as mentioned
in the introduction it is closely related to suggestions by Garner

and Morton (1969). One might however note that the algorithm which
computes the transmission matrix would have drawn the attention of
investigators to the need to examine the cross-talk interactions,

a step which was ignored in attention paradigms until rather recently.
(See Moray et al., 1976). Information transmission theory would
therefore have helped to clarify the experimental para&igm at least,
although it really comes into its own with systems of greater

complexity.

o ual




1 I ity ol i i o i WA s

L
. oo

100
% REFERENCES '
% ASHBY, R. 1965. Measuring the internal informational exchange in 1:~i
b a system. Cybernetica, 1, 5-22. g

ASHBY, R. 1969. Two tables of identities governing information flows
$ within large systems. American Society for Cybernetics
% Communications, 1, 3-8.

[
oL

L ATTNEAVE, F. 1954. Applications of information theory to Psychology.
| Holt, Rhinehart & Winston, N.Y.

.
e

il BROCKSTRA, G. 1978. On the representation and identification of
structure systems. Int. J. Systems Science. 9, 1271-1293. -

F BROCKSTRA, G. 1977. Constraint analysis and structure identification
II. Annals of Systems Research, 6, 1-20.

E' CONANT, R. 1972. Detecting subsystems of a complex system. IEEE --
Trans. Systems, Mass., and Cybernetics, SMC-2, 550-553. '

| GARNER, W. & MORTON, J. 1969. Perceptual Independence: definitionms,
X models, and experimental paradigms. Psychol. Bull. 72, 233-259.

KRIPPENDORF, K. 1979. On the identification of structures in multi--
variate data by the spectral analysis of relatiomns. Paper to -
Soclety for General Systems Research. Houston.

] McGILL, W. (1953). Multivariate Information Transmission.
MORAY, N., FITTER, M., OSTRY, D., FAVREAU, D., & NAGY, V. 1976.

Attention to pure tones. Quarterly Journal of Experimental
Psychology. -

RASMUSSEN, J. 1979. in Mental workload: its theory and measurement.
(ed. Moray, N.). Plenum Press. N.Y.

SEIGEL, 1956. Non-parametric statistics. McGraw-Hill. N.Y.

SHANNON, C. & WEAVER, W. 1949. The mathematical theory of communication.
Univ. of Illinois Press. Urbana.




PROGRAM LISTINGS.

o TR < et ——. 0o R~ - b BT e -

e g §

e}

L}

[

[ JEP RS ]

emy—Y + il [y vy

»

// ¥CE
c

C**%%%PRCGRAM TC IDENTIFY SUBRSYSTIMS BY METHOD OF CONANT
Cx*#*%*COPIED 5,27,79
c
IMELICIT INTEGER*2(I-N),INTEZCER*2(X),LOGICAL(L)
LINENSION T(7,7),NC(E22),X(7,620),MES(358),MES1(7)
LIMENSION MSET1(7),MSET2(7?),H1(7),81J(?,7),82(7)
CININSICN NROW(?,5) ,NCCL(7,5),NF2(7,7,25)
CIMENSION CHBIZZ(7,7),CRI2C(7,7),CSTAR(7,7)
CCMMCN IRIC,NSHIFT,NT,X ,NC,NROW,NCOL,NF2,CRI2Z,CHI2C,CSTAR
RLCG2(RNX)=ALOG (RNX)/ALOG(2.2)
.TEFINE FILE 10(12¢¢,4,0,IEEC)
IF=.FALSE.
IT=.TRUZE.
13=.TRUZ.
NSBIFT=1
NC=12
C

Cx%%*%#*KFEAD CATA FRCM FILE INTC X(IDOF,IT), WHICH IS IN CCVMON
C

CALL DREAD(MES,TT)

GET £,%, 'NUMBER OF QUANTIZING LEVELS’,NQ,L9

GET £,5, NUMBER OF TIME STEPS FOR SEIFT’,NSHIFT

c

Cx*****WRITE CUT TCTAL TIME CF THIS RUN

c
TT=DT*FLCAT(NT)
wRITE(S5,€8)TT

C

C»*%x%yRITE CUT TITLE

C

¢ FORMAT(” TOTAL TIME CF THIS RUN = “,F7.2,” SECONDS”)

CALL TITIE(MES,DT,NGQ,LT)

¢

C#**3IF LC IS TKUE, QUANTIZE TEE TATA
C

IF(LQ)CALL QUANT(NG)
WRITE(3,100)
120 FORMAT(® PUSZ DATA SWITCE @ DO¥N TO COMFUTE
§ FULI MATRIX’)
FAUSE
IF(.NCT.LDATS(®))GO TC 265
c N
g*****coerTE NORMALIZEL TRANSMITTED INFO FOR ENTIRE MATRIX
ENT=NT
SUM=R1CG2(1.0)
ENTM1=RNT-1.2
SUM=SUM+RNTM1*RLOG2(ANTM1)




HMIN=RLOG2 (RNT)-(SUM/RNT)
IC 1%¢ I=1,7

CAIL COUNT1(1,I,1)

CALL NF1CNT(I,1)

CAIL ENTRPY(H1(
CAIL CCUNT1(1,
CALL NF1CNT(I,
CAIL ENTRPY(E2
BW1=H1(I)
BW2=H2 (1)

PUT %,0,1,3w1,HW2
CONTINUZE

LO 200 ,1=1,7

.IC 202 J=1,7

CALL COUNTZ

I
)
I

)
2)
))

I
2
(

,J)=TR/EZ2(J)

5)I,(T(I.J).J=1,7)
FCRVA”(‘Y.IB.?(EX.F?.&))

I,(cerzz(1,J),J=1,7)

I,(CSTAR(1,J),J=1,7)

wﬁrmz =
FCRMAT (° PUSE DATA SWITCH 1 TC COMPUTE TRANS FCR SETS”)
FAUSE
IP(.NOT.ICATS(1))GO TOC 4£2
c
Cx#%#%##CCVEUTE NORMALIZED TRANSMITTZD INFC FOR TEE SELECTED SET
c

GET £,3, ENTER NUMBER CF MEVBERS IN EACH S3T°,NSET1,NSET2,NSHIFT _
S5ET &,5, “ENTEF MEMBERS IN EACZ SET ,MSET1, MSETc

CALL TRANS(NSET1,MSZT1,NSET2,MSET2,TR)

CAIL TIT::(vxb.dT NG, LV)
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WRITE(2,200)(MSET1(J),J
wRITV(E,Slg)(WQETc(J).J
WRITE(2,222)TR
223 FOPVAT(” SET 1 IS X: “,7(I1
1z FORVAT(' ‘,5X, ST 2 IS X:
Z¢ FORMAT(’+°,” TR(S1,S2) = “,
30 TC 262
427 WPITZ(3,€12)
£12 FTORMAT(’ PUSH DATA SWITCH 2 DOWN TO PRINT ENTROFY FOR ALL
FAUST
IF({ NCT.ITATS(2))30 TC S52@
CALL EPRINT
=2¢ CONT INUZ

JINT
c
CHx*%**CYPRCYTINE TC REAL DATA FIIE
C
SUERCUTINE DREAD(MES,ET)
IMELICIT INT®GER*Z(I-N),INTZGER*2(X),LOGICAL(L)
TIVMINSION X(7,620),MES(35),X1(7),MES1(7).NC(EQD)
CCVMMON IBEC, NCHIFT,V J .NC
IRIC=1
-
CH*%## AT VESSAGE (FIRST S5 REZCORDS)
IC 122 1I= 1,5
NSTOP=I%7
NSTART=NSTOP-6
PTAT(1¢ IREC)MES1
=2
TO 122 J=NSTART,NSTCF
K=K+1
VES(J)=MES1(K)
122 CCNTINUE
C
Cx#%*%%¥FEAD NUMEBER OF TATA FECORDS AND TIME STE?D
C
PEAC(10 “IREC)NT,DT
c
C*x%x%*RTAD TATA
C

L0 282 IT=1,NT

REIAD(1¢ IREC)X1

LO 227 ILCF=1,7

X(IDCF,IT)=X1(ILOF)
222 CONTINUZ

RETURN

ENL

C
CHruxx%XSUYERCUT INE TO WRITE TITLE
C

SE

o

TS’

o enmet vt

)




SUBRROUTINE TITLE(MZS,DT ,N&,LHEAD)
IVELICIT INTIGIR*2(I-N),INTEZGER*2(X),LOGICAL(L)
CIMENSION MES(3%5),X(7, 6@@) NC(€29)
CCMMCN IREC.NSHIFT.NT.X.NC
IF(LBEAD )WRITZ(8,120)
12¢ FCEVMAT(“1’, "IDENTIFICATION CF SUBSYSTEMS BY’,
4’ METEOL OF CONANT’)
WRITZ(g,152)
152 FORMAT(’e”)
WRIT®(2,222)(MES(J),J=1,35)
wnsz(e.1sz)
22C¢ FORMAT(’2°,35A2)
wFITE(S,202)CT,NQ,NSTIFT
4RIT=(&,152)
229 FORMAT(' TIME STFP =",F58.3,°, # QUANTIZINS LEVELS =~
§12,°, # CF TIME STEPS FCR SHIFT = %,I2)
RETURN
INT
c
CH%*%%x*SUYEPQUT INE TO QUANTIZE DATA
o

SURROUT INT QUANT(NYQ)

IMELICIT INTEGER*Z(I-N),INTIGER*2(X
CIMZNSION XMIN(7),XMAX(?),X(7,62¢)
7

),LOGICAL(L)
WDIV(7),X1(7)
DIMENSION PZ(7),THEESH(?),CCNST(7)
CCMVCN TREC,NSEIFT,NT,X,NC

TATA THRES3/1202.,3%2.2175,3%¢.1/
[CATA CCONET/1.2, 2”@1@..7°?0.,17€ZG..12@2..1 ’e..,RCO./
53T 5,5, INTER THRESECLD VALUZS ,TERES:

n
¥

CA####TIND MIN’S AND MAX’S FOR EACI DOF

IF(IT. .G TO 158
IVIN(I)= x T)
XMAX(I)=X(I,IT)
182 IF(Y(I,IT).GT.XMAX(I))XMAX(I)=X(1
IF(X(I,IT).ZT.XMIN(I))XMIN(I)=X(1
222 TCNTINUT

CemkxxTF TCTAL PANGE IS LESS TJAN THE THPESHOLL FCE
A PQARTICULAR CEGRTE CF FREEDOM, SET ALL DATA
FCINTE EQUAL TO ZERO

IC 257 1=1,7
fI\G~-(X"AX(I) IMIN(I))
ES(RANGT)/CONST(I)

LTHRZSA(I))RZ2(1)=2.2
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IF(LTATS(3) )WRITE(5,228)I ,XVMIN(I),XMAY (I),RANGE,CONST(I)
2<% FORMAT(IZ,2I1¢,712.4,F1C.1
252 CCNTINUE

c
CH**%2¥SCALT TACS CATA POINT Z.LE.X.LT.NQ
c
RNG=NG
IC 32¢
22¢ TIV(I)=

3 >4
=
S
St
—
S
!
b
4
]
=
L]
g
Nt
~
o
=
O

a4 0 3 1

x(
2e2 CChTI
IF(LDATS (
IF(ITATS(
272 FORMAT(7(
276 FCRVAT(?
422 CONTINUEL
ETTURN
t‘q"

O a3 1} » D o~ )

X(JK,IT),JK=1,7)
)JE=1, 7)

-3~ MDA

”

CH*%%*SYRRCUTINT TO COUNT CCCURANCTS OF EACH PATTERN
g TOP A SINGLE SET

STEFOUTINE COUNT1(NSET,MSET,I12)
ITMELICIT INTPGEP*Z(I N) INTZGER*2(X),LOGICAL(L)
LIMENSICN Z{7,622), NC(622) ,STT(7)
COMMCN IFZC, NEEIET ,NT,X NC
LC 122 I=1.NT

122 NC(I)=2
IT{I12.2¢.2)3C TO 182
ISTART=1
ISTCP=NT-NSHIFT
GO TC 178

12¢ ISTATT=1+NSEIFT
ISTOP=NT

175 TC £@@ IT=I1START,ISTCE
IP=ISTART-1

220 IP=IF+1
1SAMT=.TPUE.
1=2

280 I=I+1
IDF=MSET(I) )
IZ(X(IDF,IP).N2.X(IDF,IT))LSAME=.FALSE. '
IF(.NCT.ISAMT)ZC TC 220
IF(I.LT.NSET)GO TO 252
NC{IE)=NC(IP)+1

222 CONTINUE




¥RITE(5,525)(MSET(J),J=1,NSET),I12 i
NP1 7,711,3X,11) | -

J IT(LDATS(4))
3 cCuU
1,NT
4) )
NC*

s (
228 FCEMAT(”
IO €22 1=
IT(ITATS(
227 TOPMAT(’
€Z¢ CCNTINUZ
PEITEN
INT

'RIT~(5.SEZ)I NC(I)

'13. = .13 A “

#»#£%SUERCUTINE TO COUNT # OF OCCUPANCES OF EACH PATTERN
TCF THC SITS

cAie

OO

SUERCUTINT COUNT2(NSET1,MSIT{,NSIT2,MSET2)
JIMELICIT INTIGEE*2(I~- N) 'INTEGER*2 (X),LOGICAL(L) : ]
DIVENSION X(7,668) ,NC(€2@),¥SET1(7),MSETZ(7) -
CCMMON IRZC,NSHIFT,NT,X,NC
L0 12 I=1,NT
12¢ NC(I)=@
NT1=NT-NSBIFT
1 IC £2¢ IT=1,NT1
- ITS=IT+NSHIFT ;
IP=IP+1
IFS=IP+NSTIFT ;-
ISAME=.TRUE. i
1=2 -
252 1=1+1
IDF=MSIT1(1) }
| ®{X(ICF,IP).NZ.X(IDF,IT))ISAME=,FALSE .
| IF(.NCT.ISAMZ)50 TO 222 . %
(I ILT.NSET1)GO TO ZED P

AT PR AT ORI i)

s | s

ny
~
[\

€

VQEL (I)
(IZF,IPS) NZ.X(IDF,ITS))LSAME=,.FALSE,
NCT. IS VV)“O T0 zZege
1.IT.NSET2)G0 TC 20@
M(IF)= NC(IP)+1
£20 CONTINUZ
IF(ITATS (4) )WRITZ(S
IF(LDATS(4))WRITES5
"

=~
¢ e L

I7
I
I
I
I
I
I

) kg 1ag D ) N

I
F
(
(
(

[ W
* ,

22 FCEMAT(’ COUNTZ
EZ€ FORMAT(’

IC 62¢ I=1,NT
] IV(LLAT°(4))WPI”’(5 L))
e &g FORMAT(’ NC%,I13,° = 7,1
7 €22 CCNTINUE
1 ETTURN
‘ EINT

~ 4
-
zZ
o
—
—
-
& et

b sy [ ]
/=,




l
11
N
1
|
|
]
i
i
i
i
i
I
I
1
1
|
1
l_

e o i Ao el

o A e A ATt Bt e i

107

g*****suzpcurznz TC CCMFUTE INTRCEFY
survou"I\ INTRPY(E)
IMELICIT INTEGER*Z(I-N),INTIGER*2(X)
rrrvwsxon X(7,628),NC(6 e)
COMMCN I®EC,NSHIFT,NT,X,NC
HLCGZ(RNX)=ALOG(RNX)/AL 3(2 2)
SUM=0.0
IC 127 I=1,NT
TNC=NC(I)
IF(NC(I) NT.2)SUNM=SUM+FNC*PLOG2(ENC)
122 CONTINUE
ENT=NT-NSHIFT
.3=PLCG2(PNT)- (QUM/PMT)
EETURN
. ENI
CH*%%%SUEPCUTINE TC COMEUTE TRANSMITTEL INFORMATICN
c FOR 2 S3TS
SUFRCUTINE TRANS(NSET1,MSEZT1,NSTTZ2,MSET2,T12)
IMFLICIT INTEGER*2(I- N) INI:G:R*Z(A) LOGICAL(L)
LIMINSICN X(7,€27), vc(eee) MSE41(7).uSET (7)
COMMCN IREC V°HIFT,NT X .NC
CAIL COUNTI(NSETl.MSETl.l
CAIL ETNTPPY(X1)
CALL COUNT1(NSETZ,MSETZ,2)
CAIL INTEFY(H2)
CAIL COUNTZ(NSET1,MSEZT1,NSET2,MSET2)
CAII ENTRPY(H12)
T12=51+B2-C12
T12=T12/H2
PETURN
INT
c
CH*%%2CUEPCUTINE TO COMPUTE AND ERINT ENTROPIES FOF ALL SEIS
¢
SUEPCUTINE HPRINT
IYFLICIT INTEGEF*Z(I-N),INTEGER(X),LCGICAL(L)
TIMENSICN X(7,620),NC(6@2) ,MSET(?),MSET?(7)
COMMCN I®EC,NSHIFT,NT,X,NC
TATA VMSET%/1,2,3,4.5,6,7/
YRITE(S,12)
12 FCRMAT( 1)

C
Cx»%**COVMPUTE ENTROPIES FOP ALL 1 MEMBERE SETS

c
10 120 I=1,7
¥SET(1)=1
CAIL CCUNT1(1,MSZET,1)
CAIL ENTROY(H)




¥RITE(9,SQ)MSE
22 TCRMAT( §(’,1
123 CONTINUZ

C*‘***CCP PUTE ENTRCEY FCR ALL TWC MEMBER SETS
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The structure of naturalistic behavior: information transmission
and the analysis of ethological data.

To show the potential range of the techniques described in this report
we may apply them to some ethological data. It is common in ethology to
record several or many variables over time in the hope of discovering
significant relations among them by post hoc analysis of events which oceur -
naturally rather than under the constraints of experimental conditions when
only one or two independent variables control the behavior. The problem has
always been to reduce the large amount of data obtained in a way which allows
the detection of the important relatiomnships. From the earlier discussion
it will be apparent that Conant's method may offer a new way of approaching
this problem.

The data to be analyzed were obtained by Nash and Chamove in the
Primate laboratory at the University of Stirling. Stump-tailed macaques were
let loose in a large living area in groups, and allowed to interact with each
other while foraging for food in the sawdust which covered the floor. A sys-
tem of classification allowed their behavior to be recorded by an observer,
who entered a discription of what the animals were doing on a keyboard every

time a change in the behavior was observed. Observations were thus made not
at equal time intervals, but at the boundaries between "épisodes" of behavior.
(Real time was also recorded, but will be disregarded in this analysis.) Two
main groups of variables were noted. The first were three qualitatively dif-
ferent types of behavior, Exploratory (E), Affiliative (A), and Self-directed
(S). The second were a series of behavior patterns which were known from
earlier work to correspond to increasing intensity or activity levels, and
these will simply be referred to as behaviors 1,2,3,4 and 5, from the least
amount to the most amount of activity. Our aim is to discover the causal re-
lations, measured over episodes, among the eight variables.

Each variable was measured as a binary variable, 1 if the behavior was
present during the episode, 0 if it was absent. We therefore have an 8-varia-
ble, Q = 2 collection of data, and results of analysis at T = 1, 2, & 5 will
be given. The reader should remember that the time delay here refers to the
number of episodes, not time in seconds. A more recent version of Conant's
method (Conant, 1980) was used to analyze the data. This sllows not mercly
the calculation of transmissions between pairs of atoms to be calculated, but
searches for higher order molecules, and determines the most important molecule




at each molecular level. Two ways of choosing the minimum complexity to use
in explanation are relevant. The value Tmax is found by the program as the
highest amount of trénsmission regardless of how many source variables are
used to explain the entropy of the target. If the percentage of Tmax ex-
plained by simple molecules is high, then higher order molecules need not be
invoked; and Conant also shows how the minimum transmission needed to exceed
chance can be calculated from the number of variables, the run length, and

the Q level. In the present case, this value is approximately 0.1l. We are
therefore looking for T* values above 0.1 which explain as much of the relevant
Tmax as possible. The length of the data was 115 observations, and with Q set
to 2 and k to 8, this means that we cannot make a reliable estimate of mole-
cules bigger than two atoms. (That is, we can see reliably whether (X,Y)
affects (Z) to a greater extent than (X) or (Y) singly, but the estimates of
(W,X,Y) are unreliable.)

The program as implemented has a limit on the amount of memory which is
available for performing frequency counts on the combinations of wvariables, and
this was exceeded when all eight variables were simultaneously used both as
sources and targets. So the following results are made up of sebsets of the
variables chosen in several different ways to find an overall picture. It
would of course be relatively easy to increase the amount of memory avialable

for subsequent analyses.

Results
1. Structure of behavior at T = 1: the relation between
behavior in the current épisode and that in the next episode.
Source Variables Target Variables Relations with T*>0.1
1. E,1,2,3,4,5 E1,2,3,4,5 {1,5}+{g}
{s5}>{5}

{1,5}+4}
{5}+{2}

2. E,A,S, E,A,S {E}+{s}
{a,s}+{a}
{s}+{E}




Source Variables Target Variables Relations with T* 0.1

: 3. E,A,S,1,2,3,4,5 E,A,S,1,2,3,4,5 {E,1,2}+{5}
3 {s,1,4}>{4}
E {s,1}+{2} i
{E,4}>{s}
{A,s}+{A}
{s,4}+{E}

; 4. A,S,1,2,3,4,5 A,Ss,1,2,3,4,5 {s,5}>{5}
! {s,1,5}+{4}
. {s,5}+{2}
{A,s}+{A}

AR S -

! 5. E,A,S,1,2,3,4 E,A,S,1,2,3,4 {s,1,4}+{4}
{s,1}+{2}
{E,4}>{s}
{A,s}+{a}
{s,4}>{E}

6. E,A,S 1,2,3,4,5 {E,A}+{5}
{s}+{4}
{s}+{2}
A number of relations are striking by either their presence or their absence. At
the midrange levels of activities, (2) and (3) appear hardly at all. In fact

(3) never appears as a target, that is as a variable whose state is driven by
: other variables; and (2) never as a source, or driving variable. Note that

1 this does not mean that such states do not appear in the data. But if they

; occur they are neither significant in determining the occurrence of other
states of the system, nor as the effect of other causes. Thelr occurrence

would have to be regarded as a random occurrence, rather than as a significant

event. And the fact that they do not even occur as significant features of
molecules means that they can probably be disregarded in any explanation of

behavior.

- On the other hand low levels of activity do play a significant role, and
high levels certainly do, both as independent atoms and as binary molecules.
This is shown by the relations which keep recurring, such as (5)*(5),
1,5)+(4); (8,5)*(5); (S,1,5)*(4); (A,5)>(S); (E,4)*>(S); etc. Most of the
effects appear to require binary molecules rather than atoms to account for
the system's behavior, suggesting the presence of much interaction and tight

coupling among variables.
Among the main variables Affiliative behavior plays little role, except




for tending to produce more of itself (A,S)>(A), unless it is coupled with
(5) when it plays some part in determining the subsequent occurrence of (S).
On the other hand (E), Exploratory behavior, is a strong determinant of sub-

sequent states, and S even more so, the latter appearing again and again in
different molecules. Overall then, self-directed behavior, especially when
at a high level, is the dominant feature determining what will happen in the
next episode, with Exploratory behavior next, although both are modulated by
either low or high levels at which they occur, but not by intermediate levels.
2.

Structure of behavior at T = 2: the relation between behavior. now

and at the next but one episode.
At thisg reaction time lag the significant relations are fewer and wezker.
It should be recalled that while it is only one episode later, this may reflect

quite long periods of real time.
Source Variables Target Variables Relations with T#>0.1

1. E,A,S 1,2,3,4,5 {s}>{5}
{E}+{2}
{s}+{1}

2. 1,2,3,4,5 E,A,S {4,5}+{s}
' {4,5}+{E}

3. 1,2,3,4,5 1,2,3,4,5 {5}+{5}
| {3}>{5}
{5}{1}

4, E,A,S E,A,S {s}>{s}
{s}+{E}

Almost the only reiiable relations are due to (S). If an animal is
showing self-directed behavior now, that fact is important in determining
what will happen two episcdes hence, and if the activity level is high (4,5),
that too is important. There are very few binary molecules. Affiliative

behavior appears neither to have an effect nor to be affected by events two

episodes earlier.

3. the effect of current behavior on

Structure of behavior at T = 5:

behavior five episodes hence
Almost no significant causal links exist so far into the future. 1If

(E,A,S) 1s used as source and target, no transmission is found. If levels of ?

activity are so used, the only relations are (1,4)+(3) and (1)+(2), sugges- 1

ting that a long time hence more moderate levels of activity are caused by

whatever levels are current. The effects are, at this range, slight and un-

interesting.
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Overall, Conant's methods can clearly throw light on ethological data,
and go some way to helping the researcher find his or her way through the mass
of possible interactions in naturalistic data. It can detect relations be-
tween prothetic and metathetic sets of variables. It may suggest changes in
methodology: for example, probably it is unnecessary to measure levels of
activity at more than three levels, low, medium and high, and perhaps only the
extremes are important, although a bigger data base would have to be processed
to make sure that these findings were general.

5. Verification of proposed structures using molecular transmission

In the extract from Conant's paper quoted in an earlier chapter, it was
said that a proposed structure could be "verified" by summing all the trans-
mission in subsets, and comparing the sum with the transmissions between sets.
Conant (1980) has now developed a more sophisticated program which works 1its
way through the possible molecular structures, searching at each level for the
most powerful molecules. Thus it takes a particular target variable, and dis-
covers which atom has the strongest effect on its behavior. It then finds which
two-atom molecule has the strongest effect (a molecule which may not contain
the atom from the earlier level). It then looks at ternary molecules, and so
on. At each level it calculates what proportion of the maximum possible trans-
mission is accounted for by the proposed molecule, and,as mentioned in the last
section, when a molecule is found which accounts for the majority of Tmax, that
can be taken as the causal agent. In a later version of the program, the chi-
square significance for each molecule is calculated, and also the chi-square .
significance of the addition due to going to the higher level of complexity.

We will end this monograph by reconsidering the data on Task 1A, drawing
a line with the master-slave manipulator, using the new method. Because of the
amount of memory required to examine é variables each at Q = 4, the data were
collapsed to Q = 2. As will be seen from the appendix, the mose likely effect
of this is to reduce the number of cignifican. transmisstions. The new analysis
was run at = 0.2 and = 0.5 seconds. Owing to the limits on reliability im-
posed by the run length and the Q values for 6 variables, only binary molecules
will be shown. Fortunately, as might have been expected from the earlier method,
these account for the far greater proportion of Tmax in almost all cases. The

results are given in the next two tables.
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STRUCTURAL RELATIONS FOR TASK 1A, Q= 2, T = (0.2 secs.
Source Variables  Target Variables Normalized o .. o

Transmission
Tk

P P 0.52 5%
Xz P 0.61 88% #
X R 0.61 872 #

Xz R 0.64 93%

w w 0.74 897 # ;
wY W 0.78 93%

X X 0.56 82%

Xp X 0.62 90%

Y Y 0.37 72%

Y2 Y 0.44 867 #

z A 0.53 817 # 1
Zp Z. 0.56 867

The hash marks indicate the variable which has been taken as an adequate expla-
nation of the target behavior. The binary molecule was only adopted if it im-
proved the Z Tmax by more than 5Z. We then have the following relations as
required to explain the behavior of the system:
xz) (®): (PX) (X) : (X) (R): (YZ) (¥):
(W) (W): and (Z) (2):
or, using the same kind of digraph as before,

Q—}P

/
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If this 1s compared with the results of the earlier analysis, and bearing

in mind that we have changed the quantal level because of the memory con-
straints in the program, there is reasonably good agreement. Indeed the main
reason for the discrepancy is the extra structure which is revealed by a pro-
gram which detects the influence of the molecules rather than relying on the

first approximation given by the earlier method, which was restricted, in the




form we used it, to investigating the structure present among atomic variables.

For example, in the earlier method no atom seemed to drive (Y): but the more
sophisticated method shows that there is a binary molecule which does drive Y,
namely (Y X). Similarly, there was no atomic relation between X and P, but
there is a binary variable (XZ) which drives P and includes X, and a binary
molecule which includes P and drives X, namely (P X). These relations were

not apparent in the earlier structure.

STRUCTURAL RELATIONS IN TASK 1A, Q - 2, T = 0.5 secs.

s Source Variables Target Variables Normalized Z_Tmax
: Transmission
T*
R P 0.17 522
RZ P 0.23 78% #
X R 0.27 642
D84 R 0.34 827 #
: W W 0.59 827 #
| WY W 0.64 887 #
X X 0.22 54%
XY X 0.33 79% ¢
z.x z g'gg no significant effect
pA z 0.18 46%
WX 2 0.26 68% #

With the longer delay, the similarity to the earlier analysis is not as
great as at the shorter delay. The importance of molecular sources rather
than atomic sources is very evident. There is no significant effect on (Y) at
at delay of 0.5 second, and all the other driving variables are binary mole-

cules, not atoms. We have
(RZ)>(P): ((XY)+(X): (XY)*(R): (WY)*>(W):
and (WX)+(2)

Z — P
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CONCLUSIONS

The original motivation for applying Conant's method of analysis to the
investigation of behavior was straightforward: there is a chronic problem in
investigating man-machine interactions involving manipulators or teleoperators,
and that is how to define movements and actions, and it was hoped that infor-
mation transmission would show the relation between different degrees of free-
dom in such a way as to aid in the rational allocation of control between the
human operator and preprogrammed automatic conmtrol. It is only fair to say
that such an objective has not been attained. However, the properties of infor-
mation tranemission theory as a way of discovering structure in multi-degree-
of-freedom systems, and more generally in multivariate systems seem certainly
to merit further study. In this report we have seen that it can be used to
reveal complex behavioral interactions in a way which is revealing and can
lead to further research. TFor example, it is possible to see how a skill de-
velops, and to map the change from a set of tightly coupled strongly inter-
fering variables to amn increasingly parallel system, something which has been
thought often to be the case, but which has never been seen directly before.
In its application to ethological data, the method certainly seems to have po-
tential, A case was described in which a sét of eight variables were used to
describe animal behavior with no preconceptions as to what if any inter-
relations there were among the data, and Conant's method clearly can show the
way to achieve a meaningful reduction of the vast amount of data in such a way
that structural and causﬁl relations among the variables emerge. ‘

In the course of this work several unsolved problems in information trans-
mission theory were solved, such as the problem of how to decide on an appro-
priate level of quantizing data, and appropriate statistical measures of
significance, and Conant himself has taken these developments further. Pro-
bably the most difficult problem remaining is the best way to display the results
in cases where there are high order interactions. Minor problems arise due to
the very large amount of computer memory which is required when more than about
five variables are sampled at four or more quantal levels.

On the credit side are the claimg that Conant originally made. This tech-
nique has close relations with analysis of variance, with Markov analysis,
with cross-correlational analysis of time series, and perhaps with factor
analysis. It has some of the characteristics of a general, non-parametric
multivariate regression method, with the additional advantage of being orien-

i
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tated to time dependency and causality. There is the fact that it detects
relations in some cases where classical correlation does not, and 1t'seems,
at least to the writer, to give the user more of a feel for causality in the
structure of behavior than analysis of variance, at least when higher order
interactions are present, although this may be a matter of taste to some
extent. Conant is actively developing the technique further, and there is -

little doubt that it is worth psychologists' time to keep watch on this,
and that of other such attempts by systems scientists to find ways of analyzing
complex systems. There are strong reasons to think that the application of

behavioral science to many areas of high technology requires a method of handling

more complex sets of data than have been customary in psychology heretofore.




